Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

clib.conversion._to_numpy: Add tests for pyarrow.array with pyarrow numeric types #3599

Merged
merged 4 commits into from
Nov 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 87 additions & 1 deletion pygmt/tests/test_clib_to_numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,13 @@
from packaging.version import Version
from pygmt.clib.conversion import _to_numpy

try:
import pyarrow as pa

_HAS_PYARROW = True
except ImportError:
_HAS_PYARROW = False


def _check_result(result, expected_dtype):
"""
Expand Down Expand Up @@ -121,7 +128,7 @@ def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, expected_dtype):
#
# 1. NumPy dtypes (see above)
# 2. pandas dtypes
# 3. PyArrow dtypes
# 3. PyArrow types (see below)
#
# pandas provides following dtypes:
#
Expand Down Expand Up @@ -152,3 +159,82 @@ def test_to_numpy_pandas_series_numpy_dtypes_numeric(dtype, expected_dtype):
result = _to_numpy(series)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, series)


########################################################################################
# Test the _to_numpy function with PyArrow arrays.
#
# PyArrow provides the following types:
#
# - Numeric types:
# - int8, int16, int32, int64
# - uint8, uint16, uint32, uint64
# - float16, float32, float64
#
# In PyArrow, array types can be specified in two ways:
#
# - Using string aliases (e.g., "int8")
# - Using pyarrow.DataType (e.g., ``pa.int8()``)
#
# Reference: https://arrow.apache.org/docs/python/api/datatypes.html
########################################################################################
@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed")
@pytest.mark.parametrize(
("dtype", "expected_dtype"),
[
pytest.param("int8", np.int8, id="int8"),
pytest.param("int16", np.int16, id="int16"),
pytest.param("int32", np.int32, id="int32"),
pytest.param("int64", np.int64, id="int64"),
pytest.param("uint8", np.uint8, id="uint8"),
pytest.param("uint16", np.uint16, id="uint16"),
pytest.param("uint32", np.uint32, id="uint32"),
pytest.param("uint64", np.uint64, id="uint64"),
pytest.param("float16", np.float16, id="float16"),
pytest.param("float32", np.float32, id="float32"),
pytest.param("float64", np.float64, id="float64"),
],
)
weiji14 marked this conversation as resolved.
Show resolved Hide resolved
def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric(dtype, expected_dtype):
"""
Test the _to_numpy function with PyArrow arrays of PyArrow numeric types.
"""
data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
if dtype == "float16": # float16 needs special handling
# Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html
data = np.array(data, dtype=np.float16)
array = pa.array(data, type=dtype)[::2]
result = _to_numpy(array)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, array)


@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed")
@pytest.mark.parametrize(
("dtype", "expected_dtype"),
[
pytest.param("int8", np.float64, id="int8"),
pytest.param("int16", np.float64, id="int16"),
pytest.param("int32", np.float64, id="int32"),
pytest.param("int64", np.float64, id="int64"),
pytest.param("uint8", np.float64, id="uint8"),
pytest.param("uint16", np.float64, id="uint16"),
pytest.param("uint32", np.float64, id="uint32"),
pytest.param("uint64", np.float64, id="uint64"),
pytest.param("float16", np.float16, id="float16"),
pytest.param("float32", np.float32, id="float32"),
pytest.param("float64", np.float64, id="float64"),
],
)
weiji14 marked this conversation as resolved.
Show resolved Hide resolved
def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric_with_na(dtype, expected_dtype):
"""
Test the _to_numpy function with PyArrow arrays of PyArrow numeric types and NA.
"""
data = [1.0, 2.0, None, 4.0, 5.0, 6.0]
if dtype == "float16": # float16 needs special handling
# Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html
data = np.array(data, dtype=np.float16)
array = pa.array(data, type=dtype)[::2]
result = _to_numpy(array)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, array)
Loading