-
Notifications
You must be signed in to change notification settings - Fork 218
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
clib.converison._to_numpy: Add tests for numpy arrays of numpy numeri…
…c dtypes (#3583) Co-authored-by: Wei Ji <[email protected]>
- Loading branch information
Showing
1 changed file
with
154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
""" | ||
Tests for the _to_numpy function in the clib.conversion module. | ||
""" | ||
|
||
import sys | ||
|
||
import numpy as np | ||
import numpy.testing as npt | ||
import pandas as pd | ||
import pytest | ||
from packaging.version import Version | ||
from pygmt.clib.conversion import _to_numpy | ||
|
||
|
||
def _check_result(result, expected_dtype): | ||
""" | ||
A helper function to check if the result of the _to_numpy function is a C-contiguous | ||
NumPy array with the expected dtype. | ||
""" | ||
assert isinstance(result, np.ndarray) | ||
assert result.flags.c_contiguous | ||
assert result.dtype.type == expected_dtype | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with Python built-in types. | ||
######################################################################################## | ||
@pytest.mark.parametrize( | ||
("data", "expected_dtype"), | ||
[ | ||
pytest.param( | ||
[1, 2, 3], | ||
np.int32 | ||
if sys.platform == "win32" and Version(np.__version__) < Version("2.0") | ||
else np.int64, | ||
id="int", | ||
), | ||
pytest.param([1.0, 2.0, 3.0], np.float64, id="float"), | ||
pytest.param( | ||
[complex(+1), complex(-2j), complex("-Infinity+NaNj")], | ||
np.complex128, | ||
id="complex", | ||
), | ||
], | ||
) | ||
def test_to_numpy_python_types_numeric(data, expected_dtype): | ||
""" | ||
Test the _to_numpy function with Python built-in numeric types. | ||
""" | ||
result = _to_numpy(data) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, data) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with NumPy arrays. | ||
# | ||
# There are 24 fundamental dtypes in NumPy. Not all of them are supported by PyGMT. | ||
# | ||
# - Numeric dtypes: | ||
# - int8, int16, int32, int64, longlong | ||
# - uint8, uint16, uint32, uint64, ulonglong | ||
# - float16, float32, float64, longdouble | ||
# - complex64, complex128, clongdouble | ||
# - bool | ||
# - datetime64, timedelta64 | ||
# - str_ | ||
# - bytes_ | ||
# - object_ | ||
# - void | ||
# | ||
# Reference: https://numpy.org/doc/2.1/reference/arrays.scalars.html | ||
######################################################################################## | ||
np_dtype_params = [ | ||
pytest.param(np.int8, np.int8, id="int8"), | ||
pytest.param(np.int16, np.int16, id="int16"), | ||
pytest.param(np.int32, np.int32, id="int32"), | ||
pytest.param(np.int64, np.int64, id="int64"), | ||
pytest.param(np.longlong, np.longlong, id="longlong"), | ||
pytest.param(np.uint8, np.uint8, id="uint8"), | ||
pytest.param(np.uint16, np.uint16, id="uint16"), | ||
pytest.param(np.uint32, np.uint32, id="uint32"), | ||
pytest.param(np.uint64, np.uint64, id="uint64"), | ||
pytest.param(np.ulonglong, np.ulonglong, id="ulonglong"), | ||
pytest.param(np.float16, np.float16, id="float16"), | ||
pytest.param(np.float32, np.float32, id="float32"), | ||
pytest.param(np.float64, np.float64, id="float64"), | ||
pytest.param(np.longdouble, np.longdouble, id="longdouble"), | ||
pytest.param(np.complex64, np.complex64, id="complex64"), | ||
pytest.param(np.complex128, np.complex128, id="complex128"), | ||
pytest.param(np.clongdouble, np.clongdouble, id="clongdouble"), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize(("dtype", "expected_dtype"), np_dtype_params) | ||
def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with NumPy arrays of NumPy numeric dtypes. | ||
Test both 1-D and 2-D arrays which are not C-contiguous. | ||
""" | ||
# 1-D array that is not C-contiguous | ||
array = np.array([1, 2, 3, 4, 5, 6], dtype=dtype)[::2] | ||
assert array.flags.c_contiguous is False | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array, strict=True) | ||
|
||
# 2-D array that is not C-contiguous | ||
array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=dtype)[::2, ::2] | ||
assert array.flags.c_contiguous is False | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array, strict=True) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with pandas.Series. | ||
# | ||
# In pandas, dtype can be specified by | ||
# | ||
# 1. NumPy dtypes (see above) | ||
# 2. pandas dtypes | ||
# 3. PyArrow dtypes | ||
# | ||
# pandas provides following dtypes: | ||
# | ||
# - Numeric dtypes: | ||
# - Int8, Int16, Int32, Int64 | ||
# - UInt8, UInt16, UInt32, UInt64 | ||
# - Float32, Float64 | ||
# - DatetimeTZDtype | ||
# - PeriodDtype | ||
# - IntervalDtype | ||
# - StringDtype | ||
# - CategoricalDtype | ||
# - SparseDtype | ||
# - BooleanDtype | ||
# - ArrowDtype: a special dtype used to store data in the PyArrow format. | ||
# | ||
# References: | ||
# 1. https://pandas.pydata.org/docs/reference/arrays.html | ||
# 2. https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes | ||
# 3. https://pandas.pydata.org/docs/user_guide/pyarrow.html | ||
######################################################################################## | ||
@pytest.mark.parametrize(("dtype", "expected_dtype"), np_dtype_params) | ||
def test_to_numpy_pandas_series_numpy_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with pandas.Series of NumPy numeric dtypes. | ||
""" | ||
series = pd.Series([1, 2, 3, 4, 5, 6], dtype=dtype)[::2] # Not C-contiguous | ||
result = _to_numpy(series) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, series) |