random-insertion
is a Python library for performing fast random insertion on TSP (Travelling Salesman Problem) and SHPP (Shortest Hamiltonian Path Problem) instances, originally a part of the GLOP* codebase.
* Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., & Li, F. (2024). GLOP: Learning Global Partition and Local Construction for Solving Large-Scale Routing Problems in Real-Time. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18), 20284-20292. https://doi.org/10.1609/aaai.v38i18.30009
- python >= 3.7
- numpy >= 1.21
- Linux and Windows
$ pip install random-insertion
$ git clone https://github.com/Furffico/random-insertion.git
$ cd random-insertion
$ pip install . # add `-e` for development mode
For performing random insertion on multiple TSP instances in parallel:
import numpy as np
import random_insertion as insertion
problem_scale = 50
num_instances = 10
coordinates = np.random.randn(num_instances, problem_scale, 2)
routes = insertion.tsp_random_insertion_parallel(coordinates, threads=4)
for route in routes:
print(*route)
Despite the name, the program itself is deterministic in nature. Given the same instances and insertion orders, the program will output identical routes. If you would like to add stochasticity to the outputs, please provide shuffled insertion orders like this:
...
coordinates = np.random.randn(1, problem_scale, 2).repeat(num_instances, 0)
orders = np.arange(problem_scale, dtype=np.uint32).reshape(1, -1).repeat(num_instances, 0)
for i in range(num_instances):
np.random.shuffle(orders[i])
routes = insertion.tsp_random_insertion_parallel(coordinates, orders)
# Recommended (threads=0 to automatically determine suitable values):
routes = tsp_random_insertion_parallel(coords, orders, threads=0)
routes = shpp_random_insertion_parallel(coords, orders, threads=0)
routes = atsp_random_insertion_parallel(distances, orders, threads=0)
routes = ashpp_random_insertion_parallel(distances, orders, threads=0)
routes = cvrp_random_insertion_parallel(coords, depot_coords, demands, capacity, order, threads=0)
# For backward compatibility with GLOP:
route, cost = tsp_random_insertion(coords, order)
route, cost = atsp_random_insertion(distances, order)
route = cvrp_random_insertion(coords, depot_pos, demands, capacity, order)
route = cvrplib_random_insertion(coords, demands, capacity, order)
$ git clone https://github.com/Furffico/random-insertion.git
$ cd random-insertion
$ pip install -e . pytest
$ pytest # run tests