Skip to content

Long Short Term Memory unit (LSTM) was typically created to overcome the limitations of a Recurrent neural network (RNN). The Typical long data sets of Time series can actually be a time-consuming process which could typically slow down the training time of RNN architecture. We could restrict the data volume but this a loss of information. And i…

Notifications You must be signed in to change notification settings

Ferdib-Al-Islam/lstm-time-series-prediction-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

lstm-time-series-prediction-pytorch

Long Short Term Memory unit (LSTM) was typically created to overcome the limitations of a Recurrent neural network (RNN). The Typical long data sets of Time series can actually be a time-consuming process which could typically slow down the training time of RNN architecture. We could restrict the data volume but this a loss of information. And in any time-series data sets, there is a need to know the previous trends and the seasonality of data of the overall data set to make the right predictions.

About

Long Short Term Memory unit (LSTM) was typically created to overcome the limitations of a Recurrent neural network (RNN). The Typical long data sets of Time series can actually be a time-consuming process which could typically slow down the training time of RNN architecture. We could restrict the data volume but this a loss of information. And i…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published