Skip to content

Commit

Permalink
Merge pull request #27 from jbytecode/main
Browse files Browse the repository at this point in the history
introduce @inbounds macro for preventing index check in loops
  • Loading branch information
Kevin-Mattheus-Moerman authored Apr 4, 2024
2 parents c8e3484 + 6670ecb commit 23f4198
Showing 1 changed file with 25 additions and 25 deletions.
50 changes: 25 additions & 25 deletions src/functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -288,9 +288,9 @@ function nbezier(P::Vector{T},n::Integer) where T<:Union{AbstractPoint{3},Vector
V = fill(zeros(Float64,3),n)
end

for i 1:n
@inbounds for i 1:n
b = s.* ((1.0-t[i]).^nnr) .* (t[i].^nn)
for j = 1:N
@inbounds for j = 1:N
V[i] += P[j].*b[j]
end
end
Expand Down Expand Up @@ -1108,17 +1108,17 @@ function togeometrybasics_faces(FM::Matrix{Int64})
n, m = size(FM)
if m == 3 # Triangles
F = Vector{TriangleFace{Int64}}(undef, n)
for q 1:n
@inbounds for q 1:n
F[q] = TriangleFace{Int64}(FM[q,:])
end
elseif m == 4 # Quads
F = Vector{QuadFace{Int64}}(undef, n)
for q 1:n
@inbounds for q 1:n
F[q] = QuadFace{Int64}(FM[q,:])
end
else # Other mesh type
F = Vector{NgonFace{m,Int64}}(undef, n)
for q 1:n
@inbounds for q 1:n
F[q] = NgonFace{m,Int64}(FM[q,:])
end
end
Expand All @@ -1129,7 +1129,7 @@ function togeometrybasics_points(VM)
# Loop over vertex matrix and convert to GeometryBasics vector of Points
n = length(VM)
V=Vector{GeometryBasics.Point{3, Float64}}(undef, n)
for q 1:n
@inbounds for q 1:n
V[q] = GeometryBasics.Point{3, Float64}(VM[q])
end
return V
Expand All @@ -1139,7 +1139,7 @@ function togeometrybasics_points(VM::Matrix{Float64})
n = size(VM,1)
# Loop over vertices and convert to GeometryBasics vector of Points
V=Vector{GeometryBasics.Point{3, Float64}}(undef, n)
for q 1:n
@inbounds for q 1:n
V[q] = GeometryBasics.Point{3, Float64}(VM[q,:])
end
return V
Expand All @@ -1149,7 +1149,7 @@ function togeometrybasics_points(VM::Union{Vector{Vector{T}},Vector{Vec3{T}}}) w
n = length(VM)
# Loop over vertices and convert to GeometryBasics vector of Points
V = Vector{GeometryBasics.Point{3, Float64}}(undef, n)
for q 1:n
@inbounds for q 1:n
V[q] = GeometryBasics.Point{3, Float64}(VM[q])
end
return V
Expand All @@ -1167,7 +1167,7 @@ function edgecrossproduct(F,V)
n = length(F[1]) # Number of nodes per face
for q eachindex(F) # Loop over all faces
c = cross(V[F[q][n]],V[F[q][1]]) # Initialise as cross product of last and first vertex position vector
for qe 1:n-1 # Loop from first to end-1
@inbounds for qe 1:(n-1) # Loop from first to end-1
c += cross(V[F[q][qe]],V[F[q][qe+1]]) # Add next edge contribution
end
C[q] = c./2 # Length = face area, direction is along normal vector
Expand Down Expand Up @@ -1457,7 +1457,7 @@ function hexbox(boxDim::Vector{T},boxEl::Vector{Int64}) where T <: Real

E = [Vector{Int64}(undef,8) for _ in 1:numElements] # Allocate elements

for q 1:numElements
@inbounds for q 1:numElements
ijk_1 = ind2sub(boxEl,ind1[q])
ijk_2 = ijk_1 .+ ijk_shift[2]
ijk_3 = ijk_1 .+ ijk_shift[3]
Expand Down Expand Up @@ -1640,7 +1640,7 @@ function con_vertex_vertex_f(F,V=nothing,con_V2F=nothing)
end

con_V2V = [Vector{Int64}() for _ 1:n]
for i_v 1:n
@inbounds for i_v 1:n
if !isempty(con_V2F[i_v])
for i unique(reduce(vcat,F[con_V2F[i_v]]))
if i_v!=i
Expand All @@ -1665,7 +1665,7 @@ function con_vertex_vertex(E,V=nothing,con_V2E=nothing)
end

con_V2V = [Vector{Int64}() for _ 1:n]
for i_v 1:n
@inbounds for i_v 1:n
if !isempty(con_V2E[i_v])
for i reduce(vcat,E[con_V2E[i_v]])
if i_v!=i
Expand Down Expand Up @@ -1891,7 +1891,7 @@ function quadsphere(n,r)
F = faces(M)
V = coordinates(M)
if n > 0
for q 1:n
for _ 1:n
F,V = subquad(F,V,1)
V = r .* (V ./ norm.(V))
end
Expand Down Expand Up @@ -2002,7 +2002,7 @@ function loftlinear(V1,V2;num_steps=2,close_loop=true,face_type=:tri)
V0 = deepcopy(V)
for qq 2:2:num_steps-1
i = (1:num_loop) .+ (qq-1) *num_loop
for q 1:num_loop
@inbounds for q 1:num_loop
if q == num_loop
V[i[q]] = 0.5 .* (V0[i[q]]+V0[i[1]])
else
Expand All @@ -2017,38 +2017,38 @@ function loftlinear(V1,V2;num_steps=2,close_loop=true,face_type=:tri)
# Build faces
if face_type == :quad
F = Vector{QuadFace{Int64}}()
for i = 1:num_loop-1
for j = 1:num_steps-1
@inbounds for i = 1:(num_loop-1)
@inbounds for j = 1:(num_steps-1)
push!(F,QuadFace{Int64}([ij2ind(i,j+1),ij2ind(i+1,j+1),ij2ind(i+1,j),ij2ind(i,j) ]))
end
end

# Add faces to close over shape if requested
if close_loop
for q 1:num_steps-1
@inbounds for q 1:(num_steps-1)
push!(F,QuadFace{Int64}([ ij2ind(num_loop,q+1), ij2ind(1,q+1), ij2ind(1,q), ij2ind(num_loop,q) ]))
end
end
elseif face_type == :tri_slash
F = Vector{TriangleFace{Int64}}()
for i = 1:num_loop-1
for j = 1:num_steps-1
@inbounds for i = 1:num_loop-1
@inbounds for j = 1:num_steps-1
push!(F,TriangleFace{Int64}([ ij2ind(i+1,j+1), ij2ind(i+1,j), ij2ind(i,j) ])) # 1 2 3
push!(F,TriangleFace{Int64}([ ij2ind(i,j), ij2ind(i,j+1), ij2ind(i+1,j+1) ])) # 3 4 1
end
end

# Add faces to close over shape if requested
if close_loop
for q 1:num_steps-1
@inbounds for q 1:num_steps-1
push!(F,TriangleFace{Int64}([ ij2ind(1,q+1), ij2ind(1,q), ij2ind(num_loop,q) ])) # 1 2 3
push!(F,TriangleFace{Int64}([ ij2ind(num_loop,q), ij2ind(num_loop,q+1), ij2ind(1,q+1) ])) # 3 4 1
end
end
elseif face_type == :tri
F = Vector{TriangleFace{Int64}}()
for i = 1:num_loop-1
for j = 1:num_steps-1
@inbounds for i = 1:num_loop-1
@inbounds for j = 1:(num_steps-1)
if iseven(j) # Normal slash
push!(F,TriangleFace{Int64}([ ij2ind(i+1,j+1), ij2ind(i+1,j), ij2ind(i,j) ])) # 1 2 3
push!(F,TriangleFace{Int64}([ ij2ind(i,j), ij2ind(i,j+1), ij2ind(i+1,j+1) ])) # 3 4 1
Expand All @@ -2061,7 +2061,7 @@ function loftlinear(V1,V2;num_steps=2,close_loop=true,face_type=:tri)

# Add faces to close over shape if requested
if close_loop
for q 1:num_steps-1
@inbounds for q 1:(num_steps-1)
if iseven(q)
push!(F,TriangleFace{Int64}([ ij2ind(num_loop,q), ij2ind(num_loop,q+1), ij2ind(1,q+1) ]))
push!(F,TriangleFace{Int64}([ ij2ind(1,q+1), ij2ind(1,q), ij2ind(num_loop,q) ]))
Expand Down Expand Up @@ -2342,7 +2342,7 @@ function pointspacingmean(V::Vector{Point3{Float64}})
# Equivalent to: mean(norm.(diff(V,dims=1)))
p = 0.0
n = length(V)
for i 1:n-1
@inbounds for i 1:(n-1)
p += norm(V[i]-V[i+1])/(n-1)
end
return p
Expand All @@ -2356,7 +2356,7 @@ function pointspacingmean(F::Array{NgonFace{N, Int64}, 1},V::Vector{Point3{Float
end
p = 0.0
n = length(E)
for i 1:n
@inbounds for i 1:n
p += norm(V[E[i][1]]-V[E[i][2]])/n
end
return p
Expand Down

0 comments on commit 23f4198

Please sign in to comment.