Skip to content

Source code and datasets for the paper "Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification" (IJCAI-19)

License

Notifications You must be signed in to change notification settings

AvlTreeQL/H-GCN-IJCAI19

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

H-GCN

Description

This is the repository for the IJCAI-19 paper Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification.

Requirements

  • Tensorflow (1.9.0)
  • networkx

Usage

You can conduct node classification experiments on citation network (Cora, Citeseer or Pubmed) with the following commands:

python train.py --dataset cora --epochs 60 --early_stopping 1000 --coarsen_level 4 --dropout 0.85 --weight_decay 7e-4 --hidden 32 --node_wgt_embed_dim 8 --seed1 156 --seed2 136
python train.py --dataset citeseer --epochs 200 --early_stopping 60 --coarsen_level 4 --dropout 0.85 --weight_decay 7e-4 --hidden 30 --node_wgt_embed_dim 15 --seed1 156 --seed2 156
python train.py --dataset pubmed --epochs 250 --early_stopping 1000 --coarsen_level 4 --dropout 0.85 --weight_decay 7e-4 --hidden 30 --node_wgt_embed_dim 8 --seed1 156 --seed2 136

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{hgcn_ijcai19,
    title = {Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification},
    author = {Fenyu Hu and Yanqiao Zhu and Shu Wu and Liang Wang and Tieniu Tan},
    booktitle = {Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, (IJCAI)},
    year = {2019},
    url = {https://arxiv.org/abs/1902.06667}
}

About

Source code and datasets for the paper "Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification" (IJCAI-19)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%