Skip to content

AgentMaker/AgentCLPR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AgentCLPR

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

简介

车牌识别效果

  • 支持多种车牌的检测和识别(其中单层车牌识别效果较好):

    • 单层车牌:

        [[[[373, 282], [69, 284], [73, 188], [377, 185]], ['苏E05EV8', 0.9923506379127502]]]
        [[[[393, 278], [318, 279], [318, 257], [393, 255]], ['VA30093', 0.7386096119880676]]]
        [[[[[487, 366], [359, 372], [361, 331], [488, 324]], ['皖K66666', 0.9409016370773315]]]]
        [[[[304, 500], [198, 498], [199, 467], [305, 468]], ['鲁QF02599', 0.995299220085144]]]
        [[[[309, 219], [162, 223], [160, 181], [306, 177]], ['使198476', 0.9938704371452332]]]
        [[[[957, 918], [772, 920], [771, 862], [956, 860]], ['陕A06725D', 0.9791222810745239]]]
      
    • 双层车牌:

        [[[[399, 298], [256, 301], [256, 232], [400, 230]], ['浙G66666', 0.8870148431461757]]]
        [[[[398, 308], [228, 305], [227, 227], [398, 230]], ['陕A00087', 0.9578166644088313]]]
        [[[[352, 234], [190, 244], [190, 171], [352, 161]], ['宁A66666', 0.9958433652812175]]]
      

快速使用

  • 快速安装

    # 安装 AgentCLPR
    $ pip install agentclpr
    
    # 根据设备平台安装合适版本的 ONNXRuntime
    
    # CPU 版本(推荐非 win10 系统,无 CUDA 支持的设备安装)
    $ pip install onnxruntime
    
    # GPU 版本(推荐有 CUDA 支持的设备安装)
    $ pip install onnxruntime-gpu
    
    # DirectML 版本(推荐 win10 系统的设备安装,可实现通用的显卡加速)
    $ pip install onnxruntime-directml
    
    # 更多版本的安装详情请参考 ONNXRuntime 官网
  • 简单调用:

    # 导入 CLPSystem 模块
    from agentclpr import CLPSystem
    
    # 初始化车牌识别模型
    clp = CLPSystem()
    
    # 使用模型对图像进行车牌识别
    results = clp('test.jpg')
  • 服务器部署:

    • 启动 AgentCLPR Server 服务

      $ agentclpr server
    • Python 调用

      import cv2
      import json
      import base64
      import requests
      
      # 图片 Base64 编码
      def cv2_to_base64(image):
          data = cv2.imencode('.jpg', image)[1]
          image_base64 = base64.b64encode(data.tobytes()).decode('UTF-8')
          return image_base64
      
      # 读取图片
      image = cv2.imread('test.jpg')
      image_base64 = cv2_to_base64(image)
      
      # 构建请求数据
      data = {
          'image': image_base64
      }
      
      # 发送请求
      url = "http://127.0.0.1:5000/ocr"
      r = requests.post(url=url, data=json.dumps(data))
      
      # 打印预测结果
      print(r.json())

Contact us

Email : [email protected]
QQ Group : 1005109853