-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #39 from JunhaoSong/patch-1
Update run_skhash.py
- Loading branch information
Showing
1 changed file
with
24 additions
and
64 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,3 @@ | ||
# %% | ||
import argparse | ||
import os | ||
from glob import glob | ||
|
@@ -11,7 +10,6 @@ | |
from sklearn.cluster import DBSCAN | ||
from args import parse_args | ||
|
||
|
||
args = parse_args() | ||
root_path = args.root_path | ||
region = args.region | ||
|
@@ -27,9 +25,12 @@ | |
if not os.path.exists(f"{root_path}/{result_path}/OUT"): | ||
os.makedirs(f"{root_path}/{result_path}/OUT") | ||
|
||
|
||
# %% | ||
if not os.path.exists(f"../SKHASH"): | ||
os.system(f"git clone [email protected]:AI4EPS/SKHASH.git ../SKHASH") | ||
os.system(f"git clone https://code.usgs.gov/esc/SKHASH.git ../SKHASH") | ||
# os.system(f"git clone [email protected]:AI4EPS/SKHASH.git ../SKHASH") | ||
|
||
|
||
# %% | ||
stations = pd.read_json(f"{root_path}/{region}/obspy/stations.json", orient="index") | ||
|
@@ -48,7 +49,6 @@ | |
|
||
# %% | ||
events = pd.read_csv(f"{root_path}/{region}/adloc/ransac_events.csv", parse_dates=["time"]) | ||
# events = pd.read_csv(f"{root_path}/{region}/adloc/debug_events.csv", parse_dates=["time"]) | ||
if "magnitude" not in events.columns: | ||
events["magnitude"] = pd.NA | ||
events = events[["event_index", "time", "latitude", "longitude", "depth_km", "magnitude"]] | ||
|
@@ -59,37 +59,14 @@ | |
events = events[events["depth"] >= 0] | ||
events.to_csv(f"{root_path}/{result_path}/IN/catalog.csv", index=None) | ||
|
||
# %% | ||
picks = pd.read_csv(f"{root_path}/{region}/adloc/ransac_picks.csv", parse_dates=["phase_time"]) | ||
## | ||
picks = pd.read_csv(f"{root_path}/{region}/adloc_plus/ransac_picks.csv", parse_dates=["phase_time"]) | ||
# picks = picks[picks['phase_time'] < pd.to_datetime("2019-07-05 00:00:00")].copy() | ||
if "adloc_mask" in picks.columns: | ||
picks = picks[picks["adloc_mask"] == 1.0] | ||
# picks = pd.read_csv(f"{root_path}/{region}/adloc/debug_picks.csv", parse_dates=["phase_time"]) | ||
picks.sort_values("phase_index", inplace=True) | ||
picks.rename(columns={"event_index": "event_id"}, inplace=True) | ||
|
||
# TODO: check why ADLOC keep picks that are not in events | ||
picks = picks.merge(events[["event_id"]], on="event_id", how="right") | ||
|
||
|
||
# TODO: do the filtering in EQNet | ||
def filter_duplicates(picks): | ||
picks_filt = [] | ||
picks["t"] = (picks["phase_time"] - picks["phase_time"].min()).dt.total_seconds() | ||
print(f"before {len(picks)} picks") | ||
dbscan = DBSCAN(eps=0.10, min_samples=1) | ||
for station_id, picks_ in picks.groupby("station_id"): | ||
dbscan.fit(picks_[["t"]]) | ||
picks_["label"] = dbscan.labels_ | ||
picks_ = picks_.groupby("label").first().reset_index() | ||
picks_.drop(columns=["label", "t"], inplace=True) | ||
picks_filt.append(picks_) | ||
picks_filt = pd.concat(picks_filt) | ||
print(f"after {len(picks_filt)} picks") | ||
return picks_filt | ||
|
||
|
||
picks = filter_duplicates(picks) | ||
|
||
picks = picks[picks["event_id"] != -1] | ||
picks = picks.merge( | ||
stations[["station_id", "network", "station", "location", "channel"]], | ||
|
@@ -105,36 +82,16 @@ def filter_duplicates(picks): | |
ppicks.sort_values(["event_id", "network", "station", "location", "channel"], inplace=True) | ||
ppicks.to_csv(f"{root_path}/{result_path}/IN/pol.csv", index=None) | ||
|
||
# %% | ||
picks["station_id"] = picks["network"] + "." + picks["station"] + "." + picks["location"] + "." + picks["channel"] | ||
stations["station_id"] = ( | ||
stations["network"] + "." + stations["station"] + "." + stations["location"] + "." + stations["channel"] | ||
) | ||
sp_ratio = [] | ||
for (event_id, staton_id), picks_ in picks.groupby(["event_id", "station_id"]): | ||
if len(picks_["phase_type"].unique()) < 2: ## assume P and S | ||
continue | ||
if picks_["phase_score"].max() < 0.3: | ||
continue | ||
ratio = ( | ||
picks_[picks_["phase_type"] == "S"]["phase_amplitude"].values[0] | ||
/ picks_[picks_["phase_type"] == "P"]["phase_amplitude"].values[0] | ||
) | ||
network, station, location, channel = staton_id.split(".") | ||
sp_ratio.append( | ||
{ | ||
"event_id": event_id, | ||
"network": network, | ||
"station": station, | ||
"location": location, | ||
"channel": channel, | ||
"sp_ratio": ratio, | ||
} | ||
) | ||
sp_ratio = pd.DataFrame(sp_ratio) | ||
sp_ratio.to_csv(f"{root_path}/{result_path}/IN/amp.csv", index=None) | ||
|
||
# %% | ||
## | ||
amps = picks.drop_duplicates(subset=['event_id', 'station_id', 'sp_ratio']).copy() | ||
amps = amps.drop_duplicates(subset=["event_id", "station_id"]).copy() | ||
amps = amps[["event_id", "network", "station", "location", "channel", "sp_ratio"]] | ||
amps.sort_values(["event_id", "network", "station", "location", "channel"], inplace=True) | ||
amps.to_csv(f"{root_path}/{result_path}/IN/amp.csv", index=None) | ||
|
||
|
||
|
||
# 1D model from Shelly (2020) | ||
velocity_model = """# 1D model from Shelly (2020) | ||
# Depth(km), Vp(km/s) | ||
|
@@ -193,7 +150,7 @@ def filter_duplicates(picks): | |
0.1 | ||
$nmc # number of trials (e.g., 30) | ||
50 | ||
30 | ||
$maxout # max num of acceptable focal mech. outputs (e.g., 500) | ||
500 | ||
|
@@ -205,13 +162,13 @@ def filter_duplicates(picks): | |
0.2 | ||
$delmax # maximum allowed source-receiver distance in km. | ||
100 | ||
120 | ||
$prob_max # probability threshold for multiples (e.g., 0.1) | ||
0.2 | ||
$max_agap # maximum azimuthal gap between stations in degree | ||
150 | ||
180 | ||
$max_pgap # maximum "plungal" gap between stations in degree | ||
90 | ||
|
@@ -220,12 +177,15 @@ def filter_duplicates(picks): | |
45 | ||
$num_cpus # number of cpus for computing | ||
50 | ||
30 | ||
$use_fortran | ||
True | ||
""" | ||
|
||
with open(f"{root_path}/{result_path}/control_file.txt", "w") as fp: | ||
fp.writelines(control_params) | ||
|
||
# %% | ||
# ! python SKHASH.py control_file.txt | ||
os.system(f"python ../SKHASH/SKHASH/SKHASH.py {root_path}/{result_path}/control_file.txt") | ||
|
||
|