-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy patheda_imports.py
83 lines (73 loc) · 2.65 KB
/
eda_imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import io
import gzip
import time
import sys
import glob
import json
import re
import csv
import datetime
import tempfile
import itertools
import functools
import pickle
import multiprocessing
import calendar
from collections import Counter
import numpy as np
import pandas as pd
from pandas.plotting import scatter_matrix
import scipy.stats as stats
from scipy import interp
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster, fclusterdata
from tqdm import tqdm
import matplotlib.style # https://matplotlib.org/users/dflt_style_changes.html
import matplotlib as mpl
# mpl.use('Agg') # has to be before pyplot import
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from IPython.display import display, Image, HTML
try:
import seaborn as sns
except ImportError:
print('seaborn not found')
# related to preprocessing
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler, Normalizer, label_binarize
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.model_selection import GridSearchCV
# related to unsupervised learning
from sklearn.decomposition import TruncatedSVD, PCA
from sklearn.manifold import TSNE
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans
# related to learning
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV, LinearRegression
from sklearn import svm
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier, AdaBoostClassifier, RandomForestClassifier
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
# related to evaluation
from sklearn.model_selection import StratifiedKFold, train_test_split, cross_val_score
from sklearn import metrics
kappa_scorer = metrics.make_scorer(metrics.cohen_kappa_score)
pd.set_option('display.max_columns', 250)
pd.set_option('display.max_rows', 250)
# Don't cut off long string
# http://stackoverflow.com/questions/26277757/pandas-to-html-truncates-string-contents
pd.set_option('display.max_colwidth', -1)
mpl.style.use('classic')
mpl.rcParams['figure.figsize'] = (8, 4.5)
get_ipython().magic('matplotlib inline')
get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
get_ipython().magic('load_ext autoreload')
get_ipython().magic('autoreload 2')
display(HTML(data="""
<style>
div#notebook-container { width: 100%; }
div#menubar-container { width: 100%; }
div#maintoolbar-container { width: 100%; }
</style>
"""))