-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
418 lines (350 loc) · 18.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import pandas as pd
from datetime import datetime, date
import numpy as np
import numpy_financial as npf
class HomeInvestmentCalculator:
def __init__(self):
self.initial_costs = []
self.recurring_costs = []
self.improvements = []
self.mortgage = None
def add_initial_cost(self, description, amount, date):
"""Add initial costs like down payment, closing costs"""
self.initial_costs.append({
'description': description,
'amount': amount,
'date': pd.to_datetime(date)
})
def add_mortgage(self, principal, annual_rate, term_years, start_date):
"""Add mortgage details for amortization calculation"""
self.mortgage = {
'principal': principal,
'annual_rate': annual_rate,
'term_years': term_years,
'start_date': pd.to_datetime(start_date),
'monthly_rate': annual_rate / 12 / 100,
'total_payments': term_years * 12
}
# Calculate monthly payment using amortization formula
r = self.mortgage['monthly_rate']
n = self.mortgage['total_payments']
p = principal
self.mortgage['monthly_payment'] = p * (r * (1 + r)**n) / ((1 + r)**n - 1)
def calculate_mortgage_payment_split(self, payment_number):
"""Calculate the principal and interest split for a given payment number"""
if not self.mortgage:
return 0, 0
r = self.mortgage['monthly_rate']
p = self.mortgage['principal']
pmt = self.mortgage['monthly_payment']
# Calculate remaining principal before this payment
remaining_principal = p * (1 + r)**payment_number - \
pmt * ((1 + r)**payment_number - 1) / r
# Calculate interest portion
interest_payment = remaining_principal * r
# Calculate principal portion
principal_payment = pmt - interest_payment
return principal_payment, interest_payment
def add_recurring_cost(self, description, amount, start_date, frequency='monthly'):
"""Add recurring costs like property tax, insurance"""
self.recurring_costs.append({
'description': description,
'amount': amount,
'start_date': pd.to_datetime(start_date),
'frequency': frequency
})
def add_improvement(self, description, amount, date):
"""Add home improvements like renovations"""
self.improvements.append({
'description': description,
'amount': amount,
'date': pd.to_datetime(date)
})
def import_from_csv(self, filepath):
"""
Import costs from a CSV file.
Required columns: category, description, amount, date
Special categories: initial, recurring, mortgage, improvement, sale
"""
try:
df = pd.read_csv(filepath)
required_columns = ['category', 'description', 'amount', 'date']
# Track sale info
self.sale_info = None
if not all(col in df.columns for col in required_columns):
missing = [col for col in required_columns if col not in df.columns]
raise ValueError(f"Missing required columns: {missing}")
for _, row in df.iterrows():
category = row['category'].lower().strip()
description = row['description']
amount = float(row['amount'])
date = row['date']
if category == 'sale':
# Store sale information
self.sale_info = {
'price': amount,
'date': pd.to_datetime(date),
'closing_costs_percent': float(description) if description else 6.0
}
continue
if category == 'initial':
self.add_initial_cost(description, amount, date)
elif category == 'recurring':
frequency = row.get('frequency', 'monthly').lower().strip()
if frequency not in ['monthly', 'annual']:
print(f"Warning: Invalid frequency '{frequency}' for {description}. Defaulting to monthly.")
frequency = 'monthly'
self.add_recurring_cost(description, amount, date, frequency)
elif category == 'improvement':
self.add_improvement(description, amount, date)
elif category == 'mortgage':
# Expect description format: "term_years:30;annual_rate:3.5"
try:
params = dict(item.split("=") for item in description.split(";"))
self.add_mortgage(
principal=amount,
annual_rate=float(params['annual_rate']),
term_years=int(params['term_years']),
start_date=date
)
except Exception as e:
print(f"Error parsing mortgage parameters: {str(e)}")
raise
else:
print(f"Warning: Unknown category '{category}' for {description}. Row skipped.")
print(f"Successfully imported {len(df)} rows.")
except Exception as e:
print(f"Error importing CSV: {str(e)}")
raise
def calculate_market_comparison(self, df, sp500_annual_return=0.07):
"""
Calculate equivalent market returns if each cash flow was invested in S&P 500
Parameters:
df: DataFrame with all cash flows
sp500_annual_return: Annual return rate for S&P 500 (default 7%)
"""
market_df = df.copy()
monthly_rate = (1 + sp500_annual_return) ** (1/12) - 1
end_date = market_df['date'].max()
# Calculate what each investment would be worth at the end
market_values = []
for _, row in market_df.iterrows():
months_invested = (end_date - row['date']).days / 30.44 # approximate months
# Only negative amounts (costs) are considered as investments
if row['amount'] < 0:
future_value = -row['amount'] * (1 + monthly_rate) ** months_invested
market_values.append(future_value)
# Calculate key metrics
total_invested = -df[df['amount'] < 0]['amount'].sum() # Sum of all costs
total_withdrawn = df[df['amount'] > 0]['amount'].sum() # Sum of all income (sale proceeds)
sp500_final_value = sum(market_values) # What investments would be worth in S&P 500
return {
'S&P 500 Final Value': sp500_final_value,
'S&P 500 Net Profit': sp500_final_value - total_invested,
'Total Invested': total_invested,
'Total Withdrawn': total_withdrawn,
'Annual Return Rate Used': sp500_annual_return * 100
}
def calculate_returns(self):
"""Calculate investment returns and compare to S&P 500"""
if not self.sale_info:
raise ValueError("Sale information must be provided in CSV file")
return self._calculate_returns(
estimated_sale_price=self.sale_info['price'],
sale_date=self.sale_info['date'],
closing_costs_percent=self.sale_info['closing_costs_percent']
)
def _calculate_returns(self, estimated_sale_price, sale_date, closing_costs_percent=6):
"""Internal method containing the original calculate_returns logic"""
sale_date = pd.to_datetime(sale_date)
all_costs = []
accumulated_equity = 0
# Add initial costs
for cost in self.initial_costs:
all_costs.append({
'date': cost['date'],
'amount': -cost['amount'],
'description': cost['description'],
'type': 'Initial Cost'
})
# Add improvements
for improvement in self.improvements:
all_costs.append({
'date': improvement['date'],
'amount': -improvement['amount'],
'description': improvement['description'],
'type': 'Improvement'
})
# Add mortgage payments with principal/interest split
if self.mortgage:
current_date = self.mortgage['start_date']
payment_number = 0
while current_date <= sale_date and payment_number < self.mortgage['total_payments']:
principal_payment, interest_payment = self.calculate_mortgage_payment_split(payment_number)
# Add principal payment (becomes equity)
all_costs.append({
'date': current_date,
'amount': -principal_payment,
'description': 'Mortgage Principal',
'type': 'Equity Building'
})
# Add interest payment (true cost)
all_costs.append({
'date': current_date,
'amount': -interest_payment,
'description': 'Mortgage Interest',
'type': 'Interest Cost'
})
accumulated_equity += principal_payment
current_date += pd.DateOffset(months=1)
payment_number += 1
# Add other recurring costs
for cost in self.recurring_costs:
current_date = cost['start_date']
while current_date <= sale_date:
all_costs.append({
'date': current_date,
'amount': -cost['amount'],
'description': cost['description'],
'type': 'Recurring Cost'
})
if cost['frequency'] == 'monthly':
current_date += pd.DateOffset(months=1)
elif cost['frequency'] == 'annual':
current_date += pd.DateOffset(years=1)
# Create DataFrame and sort by date
df = pd.DataFrame(all_costs)
if not df.empty:
df = df.sort_values('date')
# Calculate remaining mortgage balance at sale
remaining_mortgage = 0
if self.mortgage:
months_elapsed = (sale_date - self.mortgage['start_date']).days / 30.44 # approximate months
if months_elapsed < self.mortgage['total_payments']:
p = self.mortgage['principal']
r = self.mortgage['monthly_rate']
pmt = self.mortgage['monthly_payment']
n = months_elapsed
remaining_mortgage = p * (1 + r)**n - pmt * ((1 + r)**n - 1) / r
# Add sale proceeds (after remaining mortgage and closing costs)
closing_costs = estimated_sale_price * (closing_costs_percent / 100)
net_sale_proceeds = estimated_sale_price - closing_costs - remaining_mortgage
# Use concat instead of append
sale_row = pd.DataFrame([{
'date': sale_date,
'amount': net_sale_proceeds,
'description': 'Sale Proceeds (After Mortgage Payoff)',
'type': 'Sale'
}])
df = pd.concat([df, sale_row], ignore_index=True)
# Calculate cumulative investment
df['cumulative_investment'] = df['amount'].cumsum()
# Calculate holding period in years using pandas
total_years = (sale_date - df['date'].min()).days / 365.25
# Calculate IRR using numpy
dates = df['date'].values
amounts = df['amount'].values
# Convert dates to years from start for IRR calculation
first_date = pd.to_datetime(dates[0])
years = np.array([(pd.to_datetime(d) - first_date).days / 365.25 for d in dates])
# Calculate IRR
try:
irr = npf.irr(amounts)
annual_irr = (1 + irr) ** (1) - 1
except Exception as e:
print(f"Warning: Could not calculate IRR: {str(e)}")
annual_irr = float('nan')
# Calculate S&P 500 equivalent return
sp500_annual_return = 0.07 # 7% assumed return
market_comparison = self.calculate_market_comparison(df, sp500_annual_return)
# Add purchase information to summary
initial_costs = df[df['type'] == 'Initial Cost']
down_payment = 0
purchase_price = 0
purchase_date = None
if not initial_costs.empty:
down_payment = -initial_costs[initial_costs['description'].str.contains('down payment', case=False)]['amount'].iloc[0] \
if not initial_costs[initial_costs['description'].str.contains('down payment', case=False)].empty else 0
purchase_price = down_payment + (self.mortgage['principal'] if self.mortgage else 0)
purchase_date = initial_costs.iloc[0]['date']
initial_investment = -df[df['type'].isin(['Initial Cost', 'Improvement'])]['amount'].sum()
# Update summary dictionary
summary = {
'Total Initial Investment': initial_investment,
'Total Cash Outflow': -df[df['amount'] < 0]['amount'].sum(),
'Accumulated Equity': accumulated_equity,
'Remaining Mortgage': remaining_mortgage,
'Sale Proceeds': net_sale_proceeds,
'Net Profit': df['amount'].sum(),
'Holding Period (Years)': total_years,
'Annual IRR': annual_irr * 100 if not np.isnan(annual_irr) else float('nan'),
'S&P 500 Final Value': market_comparison['S&P 500 Final Value'],
'S&P 500 Net Profit': market_comparison['S&P 500 Net Profit'],
'S&P 500 Annual Return Used': market_comparison['Annual Return Rate Used'],
'Outperformance vs S&P 500': df['amount'].sum() - market_comparison['S&P 500 Net Profit'],
'Purchase Price': purchase_price,
'Down Payment': down_payment,
'Purchase Date': purchase_date,
'Sale Price': estimated_sale_price,
'Sale Date': sale_date,
'Total Invested': market_comparison['Total Invested'],
'Total Withdrawn': market_comparison['Total Withdrawn']
}
return df, summary
def generate_report(self, df, summary):
"""Generate a formatted report of the investment analysis"""
report = "Home Investment Analysis Report\n"
report += "=" * 30 + "\n\n"
# Purchase Information
if summary['Purchase Date']:
purchase_date = summary['Purchase Date'].strftime('%Y-%m-%d')
report += "Purchase Information:\n"
report += f"Purchase Price: ${summary['Purchase Price']:,.2f}\n"
report += f"Down Payment: ${summary['Down Payment']:,.2f}\n"
report += f"Purchase Date: {purchase_date}\n\n"
else:
report += "Purchase Information: Not available\n\n"
# Sale Information
sale_date = summary['Sale Date'].strftime('%Y-%m-%d')
report += "Sale Information:\n"
report += f"Sale Price: ${summary['Sale Price']:,.2f}\n"
report += f"Sale Date: {sale_date}\n"
# Add holding period note
years = int(summary['Holding Period (Years)'])
months = int((summary['Holding Period (Years)'] - years) * 12)
report += f"(House owned for {years} years and {months} months)\n\n"
report += "Detailed Cost Breakdown:\n"
type_totals = df.groupby('type')['amount'].sum()
for cost_type, total in type_totals.items():
report += f"{cost_type}: ${abs(total):,.2f}\n"
report += "\nInvestment Summary:\n"
report += f"Total Initial Investment: ${summary['Total Initial Investment']:,.2f}\n"
report += f"Total Cash Outflow: ${summary['Total Cash Outflow']:,.2f}\n"
report += f"Accumulated Equity: ${summary['Accumulated Equity']:,.2f}\n"
report += f"Remaining Mortgage: ${summary['Remaining Mortgage']:,.2f}\n"
report += f"Sale Proceeds: ${summary['Sale Proceeds']:,.2f}\n"
report += f"Net Profit: ${summary['Net Profit']:,.2f}\n"
report += f"Holding Period: {summary['Holding Period (Years)']:.1f} years\n"
report += f"Annual IRR: {summary['Annual IRR']:.1f}%\n\n"
report += "\nS&P 500 Investment Comparison:\n"
report += "=" * 30 + "\n"
report += "If you had invested all your housing costs in the S&P 500 instead:\n"
report += f"Total Money Spent (Invested): ${summary['Total Invested']:,.2f}\n"
report += f"Final Sale Proceeds (Withdrawn): ${summary['Total Withdrawn']:,.2f}\n"
report += f"S&P 500 Investment Worth Today: ${summary['S&P 500 Final Value']:,.2f}\n"
report += f"S&P 500 Net Profit: ${summary['S&P 500 Net Profit']:,.2f}\n"
report += f"(Using {summary['S&P 500 Annual Return Used']:.1f}% annual return)\n"
# Calculate ROIs using the same base (total cash outflow)
total_cash_outflow = summary['Total Cash Outflow']
home_roi = (summary['Net Profit'] / total_cash_outflow) * 100
sp500_roi = (summary['S&P 500 Net Profit'] / total_cash_outflow) * 100
report += "\nReturn Comparison:\n"
report += f"Total Cash Invested: ${total_cash_outflow:,.2f}\n"
report += f"Home Investment Return: ${summary['Net Profit']:,.2f} ({home_roi:.1f}%)\n"
report += f"S&P 500 Return: ${summary['S&P 500 Net Profit']:,.2f} ({sp500_roi:.1f}%)\n"
report += f"ROI Difference: {(home_roi - sp500_roi):.1f}%\n"
report += f"Absolute Dollar Difference: ${summary['Outperformance vs S&P 500']:,.2f}\n"
# Add additional context
report += "\nNote: ROIs are calculated based on total cash invested "
report += "($978,190.68) over the entire period.\n"
return report