-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathmakeup.py
107 lines (66 loc) · 2.2 KB
/
makeup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import cv2
import os
import numpy as np
from skimage.filters import gaussian
from test import evaluate
import argparse
def parse_args():
parse = argparse.ArgumentParser()
parse.add_argument('--img-path', default='imgs/116.jpg')
return parse.parse_args()
def sharpen(img):
img = img * 1.0
gauss_out = gaussian(img, sigma=5, multichannel=True)
alpha = 1.5
img_out = (img - gauss_out) * alpha + img
img_out = img_out / 255.0
mask_1 = img_out < 0
mask_2 = img_out > 1
img_out = img_out * (1 - mask_1)
img_out = img_out * (1 - mask_2) + mask_2
img_out = np.clip(img_out, 0, 1)
img_out = img_out * 255
return np.array(img_out, dtype=np.uint8)
def hair(image, parsing, part=17, color=[230, 50, 20]):
b, g, r = color #[10, 50, 250] # [10, 250, 10]
tar_color = np.zeros_like(image)
tar_color[:, :, 0] = b
tar_color[:, :, 1] = g
tar_color[:, :, 2] = r
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
tar_hsv = cv2.cvtColor(tar_color, cv2.COLOR_BGR2HSV)
if part == 12 or part == 13:
image_hsv[:, :, 0:2] = tar_hsv[:, :, 0:2]
else:
image_hsv[:, :, 0:1] = tar_hsv[:, :, 0:1]
changed = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR)
if part == 17:
changed = sharpen(changed)
changed[parsing != part] = image[parsing != part]
return changed
if __name__ == '__main__':
# 1 face
# 11 teeth
# 12 upper lip
# 13 lower lip
# 17 hair
args = parse_args()
table = {
'hair': 17,
'upper_lip': 12,
'lower_lip': 13
}
image_path = args.img_path
cp = 'cp/79999_iter.pth'
image = cv2.imread(image_path)
ori = image.copy()
parsing = evaluate(image_path, cp)
parsing = cv2.resize(parsing, image.shape[0:2], interpolation=cv2.INTER_NEAREST)
parts = [table['hair'], table['upper_lip'], table['lower_lip']]
colors = [[230, 50, 20], [20, 70, 180], [20, 70, 180]]
for part, color in zip(parts, colors):
image = hair(image, parsing, part, color)
cv2.imshow('image', cv2.resize(ori, (512, 512)))
cv2.imshow('color', cv2.resize(image, (512, 512)))
cv2.waitKey(0)
cv2.destroyAllWindows()