-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets.py
93 lines (70 loc) · 2.51 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
import numpy as np
import tqdm
# import sklearn
import matplotlib.pyplot as plt
# import tensorflow_datasets as tfds
BUFFER_SIZE = 10000
SIZE = 32
getImagesDS = lambda X, n: np.concatenate([x[0].numpy()[None,] for x in X.take(n)])
def parse(x):
x = x[:,:,None]
x = tf.tile(x, (1,1,3))
x = tf.image.resize(x, (SIZE, SIZE))
x = x / (255/2) - 1
x = tf.clip_by_value(x, -1., 1.)
return x
def parseC(x):
x = x / (255/2) - 1
x = tf.clip_by_value(x, -1., 1.)
return x
def make_dataset(X, Y, f):
x = tf.data.Dataset.from_tensor_slices(X)
y = tf.data.Dataset.from_tensor_slices(Y)
x = x.map(f)
xy = tf.data.Dataset.zip((x, y))
xy = xy.shuffle(BUFFER_SIZE)
return xy
def load_mnist():
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype(np.float32)
x_test = x_test.astype(np.float32)
xpriv = make_dataset(x_train, y_train, parse)
xpub = make_dataset(x_test, y_test, parse)
return xpriv, xpub
def load_mnist_mangled(class_to_remove):
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype(np.float32)
x_test = x_test.astype(np.float32)
# remove class from Xpub
(x_test, y_test), _ = remove_class(x_test, y_test, class_to_remove)
# for evaluation
(x_train_seen, y_train_seen), (x_removed_examples, y_removed_examples) = remove_class(x_train, y_train, class_to_remove)
xpriv = make_dataset(x_train, y_train, parse)
xpub = make_dataset(x_test, y_test, parse)
xremoved_examples = make_dataset(x_removed_examples, y_removed_examples, parse)
xpriv_other = make_dataset(x_train_seen, y_train_seen, parse)
return xpriv, xpub, xremoved_examples, xpriv_other
def load_fashion_mnist():
mnist = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype(np.float32)
x_test = x_test.astype(np.float32)
xpriv = make_dataset(x_train, y_train, parse)
xpub = make_dataset(x_test, y_test, parse)
return xpriv, xpub
def remove_class(X, Y, ctr):
mask = Y!=ctr
XY = X[mask], Y[mask]
mask = Y==ctr
XYr = X[mask], Y[mask]
return XY, XYr
def plot(X, label='', norm=True):
n = len(X)
X = (X+1) / 2
fig, ax = plt.subplots(1, n, figsize=(n*3,3))
for i in range(n):
ax[i].imshow(X[i]);
ax[i].set(xticks=[], yticks=[], title=label)