-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
346 lines (289 loc) · 13.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import argparse
import json
import math
import os, sys
from os.path import exists, join, split
import time
import numpy as np
import shutil
import scipy.misc as misc
from PIL import Image
import torch
from torch import nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torch.nn import functional as F
from misc.utils import *
# import extractors
from tensorboardX import SummaryWriter
import torchvision.utils as vutils
from functools import partial
from data.dataset_utils import vector2txt, renormalize_img, get_cats
from misc.attention_utils import generate_attention_sequence
torch.cuda.manual_seed_all(0)
class Trainer:
def __init__(self, network, train_loader, test_loader,
args, devices):
self.args = args
self.lock_bn = True and(args.dataset in['coco', 'vgnome'])
if not self.lock_bn:
#TODO for medical image dataset batch_norm should not be locked
print('WARNING: batch norm is not locked in dataset ', args.dataset)
# self.ignore_char_idx = ignore_char_idx
self.train_loader = train_loader
self.test_loader = test_loader
self.GLOBAL_ITER = 0
self.nc = network.n_classes
self.dynamic_deathrate = args.dynamic_deathrate
# set up optimizer
if args.dataset in ['coco', 'chestxray', 'vgnome']:
self.criterion = nn.BCEWithLogitsLoss()
else:
self.criterion = nn.CrossEntropyLoss()
if args.dataset in ['coco', 'vgnome']:
self.metric = partial(coco_f1_score, topk=args.f1_topk) if args.dataset == 'coco' else partial(coco_f1_score, topk=999)
elif args.dataset in ['chestxray']:
self.metric = mul_cls_auc
elif args.dataset in ['bcidr']:
self.metric = mul_cls_accuracy
self.optimizer_init = torch.optim.Adam(network.initial_parameters(), lr=args.mm_lr)
if not args.fix_cnn:
self.optimizer_ft = torch.optim.Adam(network.pretrained_parameters(), lr=args.cnn_lr)
self.save_path = '{}/{}'.format(args.checkpoint_path, args.name)
# parallel model,
# to save or reload model use self.model.module
self.model = torch.nn.DataParallel(network, device_ids=devices)
''' attention '''
self.attention_savepath = os.path.join('checkpoints/' + self.args.name,
'attention_visualization_{}_text{}'.format(('wo', 'w')[args.use_text_in_test], ('', '_unary')[args.loader_unary_mode]))
if not os.path.isdir(self.attention_savepath) and args.save_attention:
os.mkdir(self.attention_savepath)
print ('=> init Trainer in device ({})'.format(devices))
print ('\t optimizer_ft {} optimizer_init {}'.format(hasattr(self, 'optimizer_ft'),hasattr(self, 'optimizer_init')))
print ('\t criterion {}'.format(self.criterion))
def update(self, loss):
self.optimizer_init.zero_grad()
if hasattr(self, 'optimizer_ft'):
self.optimizer_ft.zero_grad()
loss.backward()
if hasattr(self.model.module, 'rnn'):
#f use distill model, which contains rnn and multimodal cls, we clip gradients
torch.nn.utils.clip_grad_norm(self.model.module.rnn.parameters(), self.args.grad_clip)
self.optimizer_init.step()
if hasattr(self, 'optimizer_ft'):
self.optimizer_ft.step()
def get_loss_weight(self, labels):
# compute loss weight
if not hasattr(self, 'weight'):
self.weight = torch.cuda.FloatTensor(2)
else:
self.weight.fill_(0)
tot = labels.size(0) * self.nc
self.weight[0] = labels.sum() / tot
self.weight[1] = 1 - self.weight[0]
return self.weight
def train_epoch(self, epoch, eval_score=None, print_freq=50):
model = self.model
loader = self.train_loader
criterion = self.criterion
args = self.args
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
scores = AverageMeter()
model.train()
# lock the batch_norm of pretrained cnn
if self.lock_bn:
model.module.cnn.eval()
end = time.time()
for i, (input, captions, lengths, labels) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
input_var = to_var(input)
captions_var = to_var(captions)
labels_var = to_var(labels)
lengths_var = to_var(lengths)
# compute output and loss
transfer_loss = 0.0
if self.args.no_mm:
logit = model(input_var)
loss = criterion(logit, labels_var)
else:
logit = model(input_var, captions_var, lengths_var)
if type(logit) == tuple:
logit, transfer_loss = logit
transfer_loss = transfer_loss.mean()
loss = criterion(logit, labels_var)
''' rescale the loss '''
loss *= args.loss_mult
loss += transfer_loss
if type(transfer_loss) is not float:
transfer_loss = float(transfer_loss.data.cpu().numpy())
# measure accuracy and record loss
losses.update(float(loss.data), input.size(0))
scores.update(eval_score(logit, labels), 1)
self.update(loss)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}, {tfloss:.4f}) '
'Score {top1.val:.3f} ({top1.avg:.3f}) '.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, tfloss=transfer_loss, top1=scores))
sys.stdout.flush()
self.WRITER.add_scalar('train/all_loss', losses.val, self.GLOBAL_ITER)
self.WRITER.add_scalar('train/score', scores.avg, self.GLOBAL_ITER)
self.GLOBAL_ITER += 1
def train(self):
model = self.model
args = self.args
best_prec1 = 0
start_epoch = 0
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
if not args.no_history:
start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.module.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
self.GLOBAL_ITER = start_epoch*len(self.train_loader) # so the tehnsoboard visialization will be connected
print('epoch {}, best_score {}'.format(start_epoch, best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
return
self.WRITER = SummaryWriter(self.save_path)
if args.lr_decay_at != '':
decay_at_epoch = [int(a) for a in args.lr_decay_at.split(',')]
else:
decay_at_epoch = [a*args.lr_decay for a in range(1, args.epochs//args.lr_decay+1)]
print ('-> decay learning rate at ', decay_at_epoch)
for epoch in range(start_epoch, args.epochs):
#if epoch % args.lr_decay == 0 or start_epoch == epoch:
if start_epoch == epoch:
mm_lr = args.mm_lr
cnn_lr = args.cnn_lr
if epoch in decay_at_epoch:
if hasattr(self, 'optimizer_ft'):
cnn_lr = adjust_learning_rate(args.cnn_lr, self.optimizer_ft, epoch, decay_at_epoch.index(epoch)+1, decay_rate=args.lr_decay_rate) # epoch//args.lr_decay
mm_lr = adjust_learning_rate(args.mm_lr, self.optimizer_init, epoch, decay_at_epoch.index(epoch)+1, decay_rate=args.lr_decay_rate)
print('Epoch: [{0}]\tmm_lr {1:.06f} \tcnn_lr {2:.06f}'.format(epoch, mm_lr, cnn_lr))
if self.dynamic_deathrate:
self.model.module.set_deathrate(epoch / (args.epochs-1))
# train for one epoch
self.train_epoch(epoch, eval_score=self.metric)
# evaluate on validation set
prec1 = self.validate(epoch, eval_score=self.metric)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
checkpoint_path = '{}/checkpoint_latest.pth.tar'.format(self.save_path)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
'best_prec1': best_prec1,
}, is_best, filename=checkpoint_path)
if (epoch + 1) % 1 == 0:
history_path = '{}/checkpoint_{:03d}.pth.tar'.format(self.save_path, epoch+1)
shutil.copyfile(checkpoint_path, history_path)
self.WRITER.add_scalar('train/lr', mm_lr, self.GLOBAL_ITER)
self.WRITER.export_scalars_to_json("{}/tensorboard_all_scalars.json".format(self.save_path))
def test(self):
args = self.args
model = self.model
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
if not args.no_history:
start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.module.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
self.GLOBAL_ITER = start_epoch*len(self.train_loader) # so the tehnsoboard visialization will be connected
print('epoch {}, best_score {}'.format(start_epoch, best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
return
# evaluate on validation set
loader_op = self.test_loader.dataset
score_list = self.validate(start_epoch, eval_score=self.metric)
def validate(self, epoch, eval_score=None, print_freq=10, no_text=False):
args = self.args
model = self.model
loader = self.test_loader
criterion = self.criterion
batch_time = AverageMeter()
losses = AverageMeter()
scores = AverageMeter()
if args.use_text_in_test:
model.module.enable_text()
model.eval()
end = time.time()
all_labels = []
all_logits = []
for i, (input, captions, lengths, labels) in enumerate(loader):
# measure data loading time
input_var = to_var(input, volatile=True)
captions_var = to_var(captions, volatile=True)
labels_var = to_var(labels, volatile=True)
lengths_var = to_var(lengths, volatile=False)
# compute output
if self.args.no_mm:
logit = model(input_var)
else:
logit = model(input_var, captions_var, lengths_var)
if type(logit) == tuple:
logit, transfer_loss = logit
transfer_loss = transfer_loss.mean()
else:
transfer_loss = 0
loss = criterion(logit, labels_var)
''' rescale the loss '''
loss *= args.loss_mult
loss += transfer_loss
losses.update(float(loss.data), input.size(0))
scores.update(eval_score(logit, labels), 1)
all_labels.append(labels.cpu())
all_logits.append(logit.data.cpu())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Score {score.val:.3f} ({score.avg:.3f})'.format(
i, len(loader), batch_time=batch_time, loss=losses,
score=scores))
sys.stdout.flush()
# save attention
if self.args.save_attention:
attentions = model.module.get_attentions()
categories = get_cats(to_numpy(logit), to_numpy(labels), loader.dataset)
texts = vector2txt(to_numpy(captions), to_numpy(lengths), loader.dataset, loader.batch_size)
images = renormalize_img(to_numpy(torch.transpose(torch.transpose(input, 1, 2), 2, 3)), self.args.dataset)
generate_attention_sequence(self.args.name, images,
attentions, texts, categories,
savedir=os.path.join(self.attention_savepath, 'iter'+str(i)))
# re-calculate mAP for all test data
all_labels = torch.cat(all_labels, dim=0)
all_logits = torch.cat(all_logits, dim=0)
scores.reset() # reset to forget previous accumulations
f1O = eval_score(all_logits, all_labels, class_wise=False)
f1C = eval_score(all_logits, all_labels, class_wise=True)
scores.update(f1C, 1) # use the f1-C metric for val score
if hasattr(self,'WRITER'):
self.WRITER.add_scalar('val/score', scores.avg, epoch)
self.WRITER.add_scalar('val/loss', losses.avg, epoch)
return f1C