-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
37 lines (31 loc) · 1.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from data.data_loader import get_loader
import torchvision.transforms as transforms
import torch
from trainer import Trainer
# get args
from opts import args
devices = [a for a in range(torch.cuda.device_count())]
print(args)
# init data loader
train_loader, num_samples, vocab_size = get_loader(args.data_dir, args.dataset, 'train',
batch_size=args.batch_size*len(devices),
shuffle=True, num_workers=4)
val_loader, num_samples, vocab_size=get_loader(args.data_dir, args.dataset, 'test',
batch_size=args.batch_size * len(devices),
shuffle=False, num_workers=4 if args.cmd == 'train' else 0,
unary_mode=args.loader_unary_mode)
# init model
if not args.no_mm:
if 'tandemnet2v2' in args.name:
from model.tandemnet2_v2 import DistillModel
elif 'tandemnetv2' in args.name:
from model.tandemnet_v2 import DistillModel
model = DistillModel(args, vocab_size, n_classes=train_loader.dataset.num_cats, model_name=args.base_cnn_model).cuda()
else:
from model.tandemnet import MultiLabelResNet
model = MultiLabelResNet(args=args, n_classes=train_loader.dataset.num_cats, model_name=args.base_cnn_model).cuda()
trainer = Trainer(model, train_loader, val_loader, args=args, devices=devices)
if args.cmd == 'train':
trainer.train()
elif args.cmd == 'test':
trainer.test()