-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_utils.py
206 lines (172 loc) · 6.97 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from collections import OrderedDict
import torch
from quantize.int_linear_lora import LoRALayer, LoRAQuantLinear
from reassembly.cr_module import CRModule
def get_lws_parameters(sub_layers, round_idx):
normal_params = []
normal_params_names = []
scale_params = []
scale_params_names = []
for sub_layer_idx in range(len(sub_layers)):
for n, p in sub_layers[sub_layer_idx].named_parameters():
if not p.requires_grad:
continue
if "scale" in n:
scale_params.append(p)
scale_params_names.append(
"round{}_sub{}_{}".format(round_idx, sub_layer_idx, n)
)
else:
normal_params.append(p)
normal_params_names.append(
"round{}_sub{}_{}".format(round_idx, sub_layer_idx, n)
)
return normal_params, scale_params, normal_params_names, scale_params_names
def mark_only_lora_as_trainable(
sub_layers,
args,
logger,
bias="none",
) -> None:
for sub_layer_idx in range(len(sub_layers)):
sub_layer = sub_layers[sub_layer_idx]
for n, p in sub_layer.named_parameters():
p.requires_grad = False
if args.use_lora:
for n, p in sub_layer.named_parameters():
if "lora_" in n:
p.requires_grad = True
if bias == "none":
pass
elif bias == "all":
for n, p in sub_layer.named_parameters():
if "bias" in n:
p.requires_grad = True
elif "norm" in n:
p.requires_grad = True
elif "prompt" in n:
p.requires_grad = True
elif bias == "lora_only":
for m in sub_layer.modules():
if (
isinstance(m, LoRALayer)
and hasattr(m, "bias")
and m.bias is not None
):
m.bias.requires_grad = True
elif bias == "prompt_only":
for n, p in sub_layer.named_parameters():
if "prompt" in n:
p.requires_grad = True
else:
p.requires_grad = False
else:
raise NotImplementedError
requires_grad_param = []
for n, p in sub_layer.named_parameters():
if p.requires_grad == True:
requires_grad_param.append(n)
logger.info("Require grad param:")
logger.info(requires_grad_param)
def obtain_teacher_output(sub_layers, inp, attention_mask, position_ids):
for sub_layer_idx in range(len(sub_layers)):
sub_layers[sub_layer_idx].set_quant_state(weight_quant=False, act_quant=False)
if sub_layer_idx == 0:
out = sub_layers[sub_layer_idx](
inp, attention_mask=attention_mask, position_ids=position_ids
)[0]
else:
out = sub_layers[sub_layer_idx](
out,
attention_mask=attention_mask,
position_ids=position_ids,
)[0]
return out
def obtain_studnet_output(sub_layers, inp, attention_mask, position_ids, args):
for sub_layer_idx in range(len(sub_layers)):
sub_layers[sub_layer_idx].set_quant_state(
weight_quant=args.wbits < 16,
act_quant=args.abits < 16,
)
if sub_layer_idx == 0:
out = sub_layers[sub_layer_idx](
inp, attention_mask=attention_mask, position_ids=position_ids
)[0]
else:
out = sub_layers[sub_layer_idx](
out,
attention_mask=attention_mask,
position_ids=position_ids,
)[0]
return out
def replace_qlayer(config, sub_layers, args, DecoderLayer):
for sub_layer_idx in range(len(sub_layers)):
sub_layers[sub_layer_idx] = DecoderLayer(
config, sub_layers[sub_layer_idx], args
)
return sub_layers
def replace_ori_layer(layers, sub_layers, round_idx, args):
for sub_layer_idx in range(len(sub_layers)):
layers[round_idx * args.num_layer + sub_layer_idx] = sub_layers[sub_layer_idx]
def to_dev(sub_layers, dev):
for sub_layer_idx in range(len(sub_layers)):
sub_layers[sub_layer_idx] = sub_layers[sub_layer_idx].to(dev)
return sub_layers
def to_float(sub_layers):
with torch.no_grad():
for sub_layer_idx in range(len(sub_layers)):
sub_layers[sub_layer_idx] = sub_layers[sub_layer_idx].float()
return sub_layers
def to_half(sub_layers):
with torch.no_grad():
for sub_layer_idx in range(len(sub_layers)):
sub_layers[sub_layer_idx] = sub_layers[sub_layer_idx].to(torch.bfloat16)
return sub_layers
def load_qlayer_lora_state_dict(sub_layers, state_dict):
for idx, sub_layer in enumerate(sub_layers):
sub_layer.load_state_dict(state_dict[idx], strict=False)
def load_qlayer_cr_state_dict(sub_layers, state_dict, dev):
for idx, sub_layer in enumerate(sub_layers):
sub_layer.load_state_dict(state_dict[idx], strict=False)
for name, module in sub_layer.named_modules():
if isinstance(module, CRModule):
suffixes = [
"outlier_channel_idx",
"num_disassembly",
"scaling_factors",
"src_idx",
"dst_idx",
]
for suffix in suffixes:
key = f"{name}.{suffix}"
value = state_dict[idx][key].to(dev)
delattr(module, suffix)
module.register_buffer(f"{suffix}", value)
def get_qlayer_lora_state_dict(sub_layers):
return_dict = OrderedDict()
for idx, sub_layer in enumerate(sub_layers):
return_dict[idx] = sub_layer.qllm_lora_state_dict()
return return_dict
def get_qlayer_cr_state_dict(sub_layers):
return_dict = OrderedDict()
for idx, sub_layer in enumerate(sub_layers):
return_dict[idx] = sub_layer.qllm_sm_state_dict()
return return_dict
def lora_merge(sub_layers, logger, round_idx, args):
for sub_layer_idx in range(len(sub_layers)):
sub_layer = sub_layers[sub_layer_idx]
for name, module in sub_layer.named_modules():
if isinstance(module, (LoRAQuantLinear)):
logger.info(
"Merging weight for layer {}: {}".format(
round_idx * args.num_layer + sub_layer_idx, name
)
)
weight_diff = (
module.lora_B.float() @ module.lora_A.float() * module.scaling
)
after_training_weight = (module.weight.float() + weight_diff).to(
module.weight.dtype
)
module.weight.data = after_training_weight.data
module.merged = True