-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvtmo.py
545 lines (463 loc) · 18.6 KB
/
vtmo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from __future__ import print_function
from PIL import Image
import os
from torch.utils.data import Dataset
from torchvision import transforms
from torch.utils.data import random_split
from transformers import BeitModel
from torch.utils.data import DataLoader
"""
Part of the following code is adapted from VTMO - General-purpose Multimodal Pre-training
https://github.com/zichenzhang04/unilm/tree/master/vlmo
"""
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, mask=None, relative_position_bias=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(
self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q.float() @ k.float().transpose(-2, -1))
if relative_position_bias is not None:
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
mask = mask.bool()
attn = attn.masked_fill(~mask[:, None, None, :], float("-inf"))
attn = attn.softmax(dim=-1).type_as(x)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
with_vlffn=False,
layer_scale_init_values=0.1,
max_text_len=40,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2_touch = norm_layer(dim)
self.norm2_imag = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_touch = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.mlp_imag = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.mlp_vt = None
if with_vlffn:
self.mlp_vt = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.norm2_vt = norm_layer(dim)
self.gamma_1 = \
nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True) \
if layer_scale_init_values is not None else 1.0
self.gamma_2 = \
nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True) \
if layer_scale_init_values is not None else 1.0
self.max_text_len = max_text_len
def forward(self, x, mask=None, modality_type=None, relative_position_bias=None):
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x),
mask=mask, relative_position_bias=relative_position_bias))
if modality_type == "image":
x = x + self.drop_path(self.gamma_2 *
self.mlp_imag(self.norm2_imag(x)))
elif modality_type == "touch":
x = x + self.drop_path(self.gamma_2 *
self.mlp_touch(self.norm2_touch(x)))
else:
if self.mlp_vl is None:
x_touch = x[:, : self.max_text_len]
x_imag = x[:, self.max_text_len:]
x_touch = x_touch + \
self.drop_path(
self.gamma_2 * self.mlp_touch(self.norm2_touch(x_touch)))
x_imag = x_imag + \
self.drop_path(
self.gamma_2 * self.mlp_imag(self.norm2_imag(x_imag)))
x = torch.cat([x_touch, x_imag], dim=1)
else:
x = x + self.drop_path(self.gamma_2 *
self.mlp_vt(self.norm2_vt(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
no_patch_embed_bias=False,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * \
(img_size[0] // patch_size[0])
self.patch_shape = (
img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=False if no_patch_embed_bias else True,
)
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# FIXME look at relaxing size constraints
x = self.proj(x)
return x
class MultiWayTransformer(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
need_relative_position_embed=True,
use_abs_pos_emb=False,
layer_scale_init_values=0.1,
vlffn_start_layer_index=10,
config=None,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
need_relative_position_embed (bool): enable relative position bias on self-attention
use_abs_pos_emb (bool): enable abs pos emb
layer_scale_init_values (float or None): layer scale init values, set None to disable
vlffn_start_layer_index (int): vl-ffn start index
config: (dict): other hyper from pytorch-lighting
"""
super().__init__()
self.use_abs_pos_emb = use_abs_pos_emb
self.need_relative_position_embed = need_relative_position_embed
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.patch_size = patch_size
self.num_heads = num_heads
self.vlffn_start_layer_index = vlffn_start_layer_index
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(
1, num_patches + 1, embed_dim)) if self.use_abs_pos_emb else None
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
with_vlffn=(i >= self.vlffn_start_layer_index),
layer_scale_init_values=layer_scale_init_values,
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def visual_embed(self, _x):
x = self.patch_embed(_x)
x = x.flatten(2).transpose(1, 2)
B, L, _ = x.shape
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
x_mask = torch.ones(x.shape[0], x.shape[1])
return x, x_mask
class TouchFolderContrastive(Dataset):
"""Dataset for contrastive learning, pairing video and touch sensor frames."""
def __init__(self, root, transform=None, split='train'):
self.dataroot = root
self.transform = transform
self.split = split
self.pairs = []
# Collect all pairs from the six main folders
for folder in os.listdir(root):
video_folder = os.path.join(root, folder, 'video_frame')
gelsight_folder = os.path.join(root, folder, 'gelsight_frame')
if os.path.exists(video_folder) and os.path.exists(gelsight_folder):
for file_name in os.listdir(video_folder):
video_path = os.path.join(video_folder, file_name)
gel_path = os.path.join(gelsight_folder, file_name)
if os.path.exists(gel_path):
self.pairs.append((video_path, gel_path))
# Split dataset into train, validation, and test
train_size = int(0.7 * len(self.pairs))
val_size = int(0.15 * len(self.pairs))
test_size = len(self.pairs) - train_size - val_size
self.train_data, self.val_data, self.test_data = random_split(
self.pairs, [train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42)
)
# Select appropriate data split
if self.split == 'train':
self.data = self.train_data
elif self.split == 'val':
self.data = self.val_data
elif self.split == 'test':
self.data = self.test_data
else:
raise ValueError(f"Invalid split name: {split}")
def __getitem__(self, index):
"""Returns a contrastive pair."""
video_path, gel_path = self.data[index]
video_img = Image.open(video_path).convert('RGB')
gel_img = Image.open(gel_path).convert('RGB')
if self.transform is not None:
video_img = self.transform(video_img)
gel_img = self.transform(gel_img)
# Concatenate the video and gel images as positive pair
out = torch.cat((video_img, gel_img), dim=0)
return out, index # index for tracking in contrastive loss
def __len__(self):
return len(self.data)
def get_contrastive_loader(batch_size=32):
data_folder = '/content/drive/MyDrive/touch_and_go_copy/'
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize = transforms.Normalize(mean=mean, std=std)
transform = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_dataset = TouchFolderContrastive(
data_folder, transform=transform, split='train')
val_dataset = TouchFolderContrastive(
data_folder, transform=transform, split='val')
test_dataset = TouchFolderContrastive(
data_folder, transform=transform, split='test')
print(f'Number of train samples: {len(train_dataset)}')
print(f'Number of val samples: {len(val_dataset)}')
print(f'Number of test samples: {len(test_dataset)}')
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True,
num_workers=4, prefetch_factor=2)
val_loader = DataLoader(
val_dataset, batch_size=batch_size, shuffle=False, pin_memory=True,
num_workers=4, prefetch_factor=2)
test_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, pin_memory=True,
num_workers=4, prefetch_factor=2)
return train_loader, val_loader, test_loader
# Get the train and validation loaders
train_loader, val_loader, test_loader = get_contrastive_loader()
# Define InfoNCE Loss
class InfoNCELoss(nn.Module):
def __init__(self, temperature=0.07):
super(InfoNCELoss, self).__init__()
self.temperature = temperature
def forward(self, img_out, touch_out):
# Normalize outputs to calculate cosine similarity
img_out = F.normalize(img_out, dim=-1)
touch_out = F.normalize(touch_out, dim=-1)
# Cosine similarity matrix
logits = torch.matmul(img_out, touch_out.T) / self.temperature
# Diagonal elements are positive pairs
labels = torch.arange(logits.size(0), device=logits.device)
# Apply cross-entropy loss
loss = F.cross_entropy(logits, labels)
return loss
# Define the model with InfoNCE loss support
class MultiWayTransformerWithInfoNCELoss(MultiWayTransformer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Load Beit-base model
beit_base = BeitModel.from_pretrained(
"microsoft/beit-base-patch16-224")
beit_state_dict = beit_base.state_dict()
# Copy weights for the fully connected networks in each block
for layer_idx, block in enumerate(self.blocks):
# Access corresponding FC weights from Beit-base
beit_fc1_weight = beit_state_dict[f"encoder.layer.{
layer_idx}.intermediate.dense.weight"]
beit_fc1_bias = beit_state_dict[f"encoder.layer.{
layer_idx}.intermediate.dense.bias"]
beit_fc2_weight = beit_state_dict[f"encoder.layer.{
layer_idx}.output.dense.weight"]
beit_fc2_bias = beit_state_dict[f"encoder.layer.{
layer_idx}.output.dense.bias"]
# Assign the same weights to the image, touch, and (if exists) vl FC layers in your model
for fc_network in [block.mlp_imag, block.mlp_touch, block.mlp_vt if block.mlp_vt else block.mlp_imag]:
fc_network.fc1.weight.data.copy_(beit_fc1_weight)
fc_network.fc1.bias.data.copy_(beit_fc1_bias)
fc_network.fc2.weight.data.copy_(beit_fc2_weight)
fc_network.fc2.bias.data.copy_(beit_fc2_bias)
# # Freeze the attention layer and mlp_imag in each block
# for block in self.blocks:
# # Freeze attention layer parameters
# for param in block.attn.parameters():
# param.requires_grad = False
# # Freeze mlp_imag parameters
# for param in block.mlp_imag.parameters():
# param.requires_grad = False
def forward(self, img, touch_img):
img_emb, _ = self.visual_embed(img)
touch_emb, _ = self.visual_embed(touch_img)
for block in self.blocks:
img_emb = block(img_emb, modality_type="image")
touch_emb = block(touch_emb, modality_type="touch")
img_out = self.norm(img_emb[:, 0])
touch_out = self.norm(touch_emb[:, 0])
return img_out, touch_out