-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
84 lines (70 loc) · 2.59 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load the Orca model and tokenizer
# https://huggingface.co/microsoft/Orca-2-7b
# model_name = "microsoft/Orca-2-7b"
# save_path = "./orca_finetuned"
# Can be replaced with a smaller alternative as discussed.
# Use this currently for testing
model_name = "HuggingFaceTB/SmolLM-360M"
save_path = "./smollm_finetuned"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
# Load the dataset
"""
Assume the csv dataset is in the following format:
question,answer
"6 9 12 13", "Steps:\n13 - 9 = 4 (left: 4 6 12)\n 12 / 4 = 3 (left: 3 6)\n 3 * 6 = 18 (left: 18)\n18 + 6 = 24 (left: 24)\nAnswer: ((13 - 9) / 4) * 6 + 6 = 24"
"""
dataset_path = "./datasets/finetune.csv"
dataset = load_dataset("csv", data_files=dataset_path)
# Split the dataset into 90% train, 10% validation
train_test_split = dataset["train"].train_test_split(test_size=0.1)
train_dataset = train_test_split["train"]
eval_dataset = train_test_split["test"]
def preprocess_function(examples):
"""Tokenize the inputs and set the answer as the target label."""
inputs = [
f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant"
for question in examples["Puzzle"]
]
outputs = [f"{answer}<|im_end|>" for answer in examples["Response"]]
model_inputs = tokenizer(inputs, text_target=outputs,
max_length=1024, truncation=True)
return model_inputs
tokenized_train_dataset = train_dataset.map(
preprocess_function, batched=True, remove_columns=train_dataset.column_names
)
tokenized_eval_dataset = eval_dataset.map(
preprocess_function, batched=True, remove_columns=eval_dataset.column_names
)
# TODO: Adjust hyperparameters
training_args = TrainingArguments(
output_dir="./orca_finetuned",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
gradient_accumulation_steps=8,
num_train_epochs=3,
save_steps=500,
save_total_limit=2,
evaluation_strategy="steps",
eval_steps=500,
logging_steps=100,
learning_rate=5e-5,
weight_decay=0.01,
fp16=True,
push_to_hub=False,
remove_unused_columns=True,
)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args, # Pass in the hyperparameters
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_eval_dataset,
)
trainer.train()
# Save the fine-tuned model
trainer.save_model(save_path)
tokenizer.save_pretrained(save_path)