forked from ritheshkumar95/pytorch-vqvae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
67 lines (53 loc) · 2.44 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
from torch.autograd import Function
class VectorQuantization(Function):
@staticmethod
def forward(ctx, inputs, codebook):
with torch.no_grad():
embedding_size = codebook.size(1)
inputs_size = inputs.size()
inputs_flatten = inputs.view(-1, embedding_size)
codebook_sqr = torch.sum(codebook ** 2, dim=1)
inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True)
# Compute the distances to the codebook
distances = torch.addmm(codebook_sqr + inputs_sqr,
inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0)
_, indices_flatten = torch.min(distances, dim=1)
indices = indices_flatten.view(*inputs_size[:-1])
ctx.mark_non_differentiable(indices)
return indices
@staticmethod
def backward(ctx, grad_output):
raise RuntimeError('Trying to call `.grad()` on graph containing '
'`VectorQuantization`. The function `VectorQuantization` '
'is not differentiable. Use `VectorQuantizationStraightThrough` '
'if you want a straight-through estimator of the gradient.')
class VectorQuantizationStraightThrough(Function):
@staticmethod
def forward(ctx, inputs, codebook):
indices = vq(inputs, codebook)
indices_flatten = indices.view(-1)
ctx.save_for_backward(indices_flatten, codebook)
ctx.mark_non_differentiable(indices_flatten)
codes_flatten = torch.index_select(codebook, dim=0,
index=indices_flatten)
codes = codes_flatten.view_as(inputs)
return (codes, indices_flatten)
@staticmethod
def backward(ctx, grad_output, grad_indices):
grad_inputs, grad_codebook = None, None
if ctx.needs_input_grad[0]:
# Straight-through estimator
grad_inputs = grad_output.clone()
if ctx.needs_input_grad[1]:
# Gradient wrt. the codebook
indices, codebook = ctx.saved_tensors
embedding_size = codebook.size(1)
grad_output_flatten = (grad_output.contiguous()
.view(-1, embedding_size))
grad_codebook = torch.zeros_like(codebook)
grad_codebook.index_add_(0, indices, grad_output_flatten)
return (grad_inputs, grad_codebook)
vq = VectorQuantization.apply
vq_st = VectorQuantizationStraightThrough.apply
__all__ = [vq, vq_st]