-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathengine.py
307 lines (265 loc) · 10.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""Shared utilities for all main scripts."""
import os
import pickle
import random
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import DataLoader, default_collate
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.tensorboard import SummaryWriter
from tqdm import trange
class BaseTrainTester:
"""Basic train/test class to be inherited."""
def __init__(self, args):
"""Initialize."""
if dist.get_rank() == 0:
args.save(str(args.log_dir / "hparams.json"))
self.args = args
if dist.get_rank() == 0:
self.writer = SummaryWriter(log_dir=args.log_dir)
@staticmethod
def get_datasets():
"""Initialize datasets."""
train_dataset = None
test_dataset = None
return train_dataset, test_dataset
def get_loaders(self, collate_fn=default_collate):
"""Initialize data loaders."""
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Datasets
train_dataset, test_dataset = self.get_datasets()
# Samplers and loaders
g = torch.Generator()
g.manual_seed(0)
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(
train_dataset,
batch_size=self.args.batch_size,
shuffle=False,
num_workers=self.args.num_workers,
worker_init_fn=seed_worker,
collate_fn=collate_fn,
pin_memory=True,
sampler=train_sampler,
drop_last=True,
generator=g
)
test_sampler = DistributedSampler(test_dataset, shuffle=True)
test_loader = DataLoader(
test_dataset,
batch_size=self.args.batch_size_val,
shuffle=False,
num_workers=0,
worker_init_fn=seed_worker,
collate_fn=collate_fn,
pin_memory=True,
sampler=test_sampler,
drop_last=False,
generator=g
)
return train_loader, test_loader
@staticmethod
def get_model():
"""Initialize the model."""
return None
@staticmethod
def get_criterion():
"""Get loss criterion for training."""
# criterion is a class, must have compute_loss and compute_metrics
return None
def get_optimizer(self, model):
"""Initialize optimizer."""
optimizer_grouped_parameters = [
{"params": [], "weight_decay": 0.0, "lr": self.args.lr},
{"params": [], "weight_decay": 5e-4, "lr": self.args.lr}
]
no_decay = ["bias", "LayerNorm.weight", "LayerNorm.bias"]
for name, param in model.named_parameters():
if any(nd in name for nd in no_decay):
optimizer_grouped_parameters[0]["params"].append(param)
else:
optimizer_grouped_parameters[1]["params"].append(param)
optimizer = optim.AdamW(optimizer_grouped_parameters)
return optimizer
def main(self, collate_fn=default_collate):
"""Run main training/testing pipeline."""
# Get loaders
train_loader, test_loader = self.get_loaders(collate_fn)
# Get model
model = self.get_model()
# Get criterion
criterion = self.get_criterion()
# Get optimizer
optimizer = self.get_optimizer(model)
# Move model to devices
if torch.cuda.is_available():
model = model.cuda()
model = DistributedDataParallel(
model, device_ids=[self.args.local_rank],
broadcast_buffers=False, find_unused_parameters=True
)
# Check for a checkpoint
start_iter, best_loss = 0, None
if self.args.checkpoint:
assert os.path.isfile(self.args.checkpoint)
start_iter, best_loss = self.load_checkpoint(model, optimizer)
# Eval only
if bool(self.args.eval_only):
print("Test evaluation.......")
model.eval()
new_loss = self.evaluate_nsteps(
model, criterion, test_loader, step_id=-1,
val_iters=max(
5,
int(4 * len(self.args.tasks)/self.args.batch_size_val)
)
)
return model
# Training loop
iter_loader = iter(train_loader)
model.train()
for step_id in trange(start_iter, self.args.train_iters):
try:
sample = next(iter_loader)
except StopIteration:
iter_loader = iter(train_loader)
sample = next(iter_loader)
self.train_one_step(model, criterion, optimizer, step_id, sample)
if (step_id + 1) % self.args.val_freq == 0:
print("Train evaluation.......")
model.eval()
new_loss = self.evaluate_nsteps(
model, criterion, train_loader, step_id,
val_iters=max(
5,
int(4 * len(self.args.tasks)/self.args.batch_size_val)
),
split='train'
)
print("Test evaluation.......")
model.eval()
new_loss = self.evaluate_nsteps(
model, criterion, test_loader, step_id,
val_iters=max(
5,
int(4 * len(self.args.tasks)/self.args.batch_size_val)
)
)
if dist.get_rank() == 0: # save model
best_loss = self.save_checkpoint(
model, optimizer, step_id,
new_loss, best_loss
)
model.train()
return model
def train_one_step(self, model, criterion, optimizer, step_id, sample):
"""Run a single training step."""
pass
@torch.no_grad()
def evaluate_nsteps(self, model, criterion, loader, step_id, val_iters,
split='val'):
"""Run a given number of evaluation steps."""
return None
def load_checkpoint(self, model, optimizer):
"""Load from checkpoint."""
print("=> loading checkpoint '{}'".format(self.args.checkpoint))
model_dict = torch.load(self.args.checkpoint, map_location="cpu")
model.load_state_dict(model_dict["weight"])
optimizer.load_state_dict(model_dict["optimizer"])
for p in range(len(optimizer.param_groups)):
optimizer.param_groups[p]['lr'] = self.args.lr
start_iter = model_dict.get("iter", 0)
best_loss = model_dict.get("best_loss", None)
print("=> loaded successfully '{}' (step {})".format(
self.args.checkpoint, model_dict.get("iter", 0)
))
del model_dict
torch.cuda.empty_cache()
return start_iter, best_loss
def save_checkpoint(self, model, optimizer, step_id, new_loss, best_loss):
"""Save checkpoint if requested."""
if new_loss is None or best_loss is None or new_loss <= best_loss:
best_loss = new_loss
torch.save({
"weight": model.state_dict(),
"optimizer": optimizer.state_dict(),
"iter": step_id + 1,
"best_loss": best_loss
}, self.args.log_dir / "best.pth")
torch.save({
"weight": model.state_dict(),
"optimizer": optimizer.state_dict(),
"iter": step_id + 1,
"best_loss": best_loss
}, self.args.log_dir / "last.pth")
return best_loss
def synchronize_between_processes(self, a_dict):
all_dicts = all_gather(a_dict)
if not is_dist_avail_and_initialized() or dist.get_rank() == 0:
merged = {}
for key in all_dicts[0].keys():
device = all_dicts[0][key].device
merged[key] = torch.cat([
p[key].to(device) for p in all_dicts
if key in p
])
a_dict = merged
return a_dict
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty(
(max_size,), dtype=torch.uint8, device="cuda"
))
if local_size != max_size:
padding = torch.empty(
size=(max_size - local_size,),
dtype=torch.uint8, device="cuda"
)
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()