forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
384 lines (334 loc) · 15.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import tensorrt as trt
from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import Tensor, gather_last_token_logits
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
ColumnLinear, KeyValueCacheParams, LayerNorm,
PositionEmbeddingType)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ..generation_mixin import GenerationMixin
from ..gpt.model import GPTEmbedding
class OPTDecoderLayer(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings,
dtype=None,
hidden_act='relu',
pre_norm=False,
tp_group=None,
tp_size=1):
super().__init__()
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.attention = Attention(
hidden_size,
num_attention_heads,
max_position_embeddings=max_position_embeddings,
attention_mask_type=AttentionMaskType.causal,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
self.mlp = MLP(hidden_size=hidden_size,
ffn_hidden_size=hidden_size * 4,
hidden_act=hidden_act,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.pre_norm = pre_norm
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None):
residual = hidden_states
attention_input = hidden_states
if self.pre_norm:
attention_input = self.input_layernorm(hidden_states)
# At this point the hidden_states object must be a Tensor.
assert isinstance(attention_input, Tensor)
attention_output = self.attention(attention_input,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
if not self.pre_norm:
hidden_states = self.input_layernorm(hidden_states)
residual = hidden_states
if self.pre_norm:
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if not self.pre_norm:
hidden_states = self.post_layernorm(hidden_states)
if use_cache:
return (hidden_states, presents)
return hidden_states
class OPTModel(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype=None,
mapping=Mapping(),
pre_norm=True,
do_layer_norm_before=True,
use_prompt_tuning=False,
use_parallel_embedding=False,
embedding_sharding_dim=0):
super().__init__()
self.do_layer_norm_before = do_layer_norm_before
self.embedding = GPTEmbedding(
vocab_size,
hidden_size,
max_position_embeddings,
position_embedding_type=PositionEmbeddingType.learned_absolute,
dtype=dtype,
use_prompt_tuning=use_prompt_tuning,
tensor_parallel=mapping.tp_size if use_parallel_embedding else 1,
tensor_parallel_group=mapping.tp_group
if use_parallel_embedding else None,
sharding_dim=embedding_sharding_dim,
tp_rank=mapping.tp_rank)
self.layers = ModuleList([
OPTDecoderLayer(hidden_size=hidden_size,
num_attention_heads=num_heads,
max_position_embeddings=max_position_embeddings,
dtype=dtype,
hidden_act=hidden_act,
pre_norm=pre_norm,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size) for _ in range(num_layers)
])
if self.do_layer_norm_before:
self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None):
hidden_states = self.embedding(input_ids, position_ids,
prompt_embedding_table, prompt_tasks,
prompt_vocab_size)
if kv_cache_params.past_key_value is None:
kv_cache_params.past_key_value = tuple([None] * len(self.layers))
if use_cache:
presents = []
for layer, past in zip(self.layers, kv_cache_params.past_key_value):
hidden_states = layer(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
cache_indirection=kv_cache_params.cache_indirection),
attention_params=attention_params)
if use_cache:
presents.append(hidden_states[1])
hidden_states = hidden_states[0]
if self.do_layer_norm_before:
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class OPTLMHeadModel(OPTModel, GenerationMixin):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype,
mapping=Mapping(),
pre_norm=True,
do_layer_norm_before=True,
use_prompt_tuning=False,
use_parallel_embedding=False,
embedding_sharding_dim=0,
share_embedding_table=False):
if share_embedding_table and mapping.tp_size > 1:
if (not use_parallel_embedding) or (use_parallel_embedding and
embedding_sharding_dim == 1):
raise NotImplementedError(
'For multiple-processes cases, sharing the embedding table must set use_parallel_embedding=True and embedding_sharding_dim = 0'
)
super().__init__(num_layers, num_heads, hidden_size, vocab_size,
hidden_act, max_position_embeddings, dtype, mapping,
pre_norm, do_layer_norm_before, use_prompt_tuning,
use_parallel_embedding, embedding_sharding_dim)
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
if isinstance(dtype, str):
self._kv_dtype = str_dtype_to_trt(dtype)
else:
assert isinstance(dtype, trt.DataType)
self._kv_dtype = dtype
self._dtype = self._kv_dtype
self._num_layers = num_layers
self._num_heads = num_heads
self._hidden_size = hidden_size
self._vocab_size = vocab_size
self._tp_size = mapping.tp_size
self._use_prompt_tuning = use_prompt_tuning
share_weight = None
if share_embedding_table:
share_weight = self.embedding.vocab_embedding.weight
self.lm_head = ColumnLinear(hidden_size,
vocab_size_padded,
bias=False,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True,
share_weight=share_weight)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
last_token_ids=None,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None):
hidden_states = super().forward(input_ids, position_ids, use_cache,
attention_mask, kv_cache_params,
attention_params,
prompt_embedding_table, prompt_tasks,
prompt_vocab_size)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = gather_last_token_logits(
hidden_states, last_token_ids,
default_net().plugin_config.remove_input_padding)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output('logits', self._kv_dtype)
if use_cache and default_net().plugin_config.paged_kv_cache == False:
for i, present in enumerate(presents):
present.mark_output(f'present_key_value_{i}', self._kv_dtype)
return (lm_logits, presents)
return lm_logits
def prepare_inputs(self,
max_batch_size,
max_input_len,
max_new_tokens,
use_cache,
max_beam_width,
prompt_embedding_table_size=32):
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
# Prepare inputs
head_size = self._hidden_size // self._num_heads
num_heads = self._num_heads // self._tp_size
remove_input_padding = default_net().plugin_config.remove_input_padding
use_gpt_attention_plugin = default_net(
).plugin_config.gpt_attention_plugin
use_gemm_plugin = default_net().plugin_config.gemm_plugin
model_inputs = self.prepare_basic_inputs(
max_batch_size,
max_beam_width,
max_input_len,
max_new_tokens,
num_heads,
head_size,
self._num_layers,
self._kv_dtype,
remove_input_padding,
use_gpt_attention_plugin,
use_gemm_plugin=use_gemm_plugin)
bb_range = [
1, (max_batch_size * max_beam_width + 1) // 2,
max_batch_size * max_beam_width
]
p_embedding_range = [
1, prompt_embedding_table_size // 2, prompt_embedding_table_size
]
num_tokens_range = [
1, max_batch_size * max_beam_width,
max(max_input_len * max_batch_size, max_beam_width * max_batch_size)
]
[1, 1, max_input_len]
prompt_embedding_table = None
tasks = None
prompt_vocab_size = None
if self._use_prompt_tuning:
prompt_embedding_table = Tensor(name='prompt_embedding_table',
dtype=self._dtype,
shape=[-1, self._hidden_size],
dim_range=OrderedDict([
('prompt_embedding_table_size',
[p_embedding_range]),
('hidden_size',
[self._hidden_size]),
]))
if remove_input_padding:
tasks = Tensor(name='tasks',
dtype=trt.int32,
shape=[1, -1],
dim_range=OrderedDict([
('batch_size', [1]),
('input_len', [num_tokens_range]),
]))
else:
tasks = Tensor(name='tasks',
dtype=trt.int32,
shape=[-1, 1],
dim_range=OrderedDict([
('batch_size', [bb_range]),
('input_len_for_task', [1]),
]))
prompt_vocab_size = Tensor(name='prompt_vocab_size',
dtype=trt.int32,
shape=[1],
dim_range=OrderedDict([('size', [1])]))
return (model_inputs['input_ids'], model_inputs['position_ids'], True,
model_inputs['last_token_ids'], model_inputs['attention_mask'],
KeyValueCacheParams(
past_key_value=model_inputs['past_key_value'],
host_past_key_value_lengths=model_inputs[
'host_past_key_value_lengths'],
cache_indirection=model_inputs['cache_indirection'],
),
AttentionParams(
sequence_length=model_inputs['sequence_length'],
context_lengths=model_inputs['context_lengths'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types']),
prompt_embedding_table, tasks, prompt_vocab_size)