forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
454 lines (403 loc) · 18.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
import tensorrt as trt
from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import (PositionEmbeddingType, Tensor, assertion,
gather_last_token_logits, shape)
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ...quantization import QuantMode
class GPTJDecoderLayer(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings,
rotary_dim,
dtype=None,
hidden_act='relu',
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0)):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.rotary_dim = rotary_dim
self.dtype = dtype
self.hidden_act = hidden_act
self.tp_group = tp_group
self.tp_size = tp_size
self.quant_mode = quant_mode
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.attention = Attention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
rotary_embedding_percentage=rotary_dim /
(hidden_size // num_attention_heads),
position_embedding_type=PositionEmbeddingType.rope_gptj,
max_position_embeddings=max_position_embeddings,
dtype=dtype,
attention_mask_type=AttentionMaskType.causal,
bias=False,
tp_group=tp_group,
tp_size=tp_size,
use_int8_kv_cache=quant_mode.has_int8_kv_cache(),
quant_mode=quant_mode)
self.mlp = MLP(hidden_size=hidden_size,
ffn_hidden_size=hidden_size * 4,
hidden_act=hidden_act,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None):
if not default_net(
).plugin_config.layernorm_plugin and trt.__version__[:3] == '8.6':
raise AssertionError(
"You need to enable the LayerNorm plugin for GPT-J with TensorRT 8.6. Please set plugin_config.layernorm_plugin"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
attention_output, presents = attention_output
attention_output = attention_output
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attention_output + feed_forward_hidden_states + residual
if use_cache:
return (hidden_states, presents)
return hidden_states
class GPTJModel(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
rotary_dim,
dtype=None,
mapping=Mapping(),
quant_mode=QuantMode(0)):
super().__init__()
self.embedding = Embedding(vocab_size, hidden_size, dtype=dtype)
self.layers = ModuleList([
GPTJDecoderLayer(hidden_size=hidden_size,
num_attention_heads=num_heads,
max_position_embeddings=max_position_embeddings,
rotary_dim=rotary_dim,
dtype=dtype,
hidden_act=hidden_act,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
quant_mode=quant_mode) for _ in range(num_layers)
])
self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
def forward(self,
input_ids: Tensor,
use_cache=False,
kv_cache_params=None,
attention_params=None):
hidden_states = self.embedding(input_ids)
if kv_cache_params.past_key_value is None:
kv_cache_params.past_key_value = tuple([None] * len(self.layers))
if use_cache:
presents = []
for layer, past, pointer in zip(
self.layers, kv_cache_params.past_key_value,
kv_cache_params.kv_cache_block_pointers):
hidden_states = layer(
hidden_states,
use_cache=use_cache,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
kv_cache_block_pointers=[pointer],
cache_indirection=kv_cache_params.cache_indirection),
attention_params=attention_params)
if use_cache:
presents.append(hidden_states[1])
hidden_states = hidden_states[0]
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class GPTJForCausalLM(GPTJModel):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
rotary_dim,
dtype,
logits_dtype='float32',
mapping=Mapping(),
quant_mode=QuantMode(0)):
if isinstance(dtype, str):
self._dtype = str_dtype_to_trt(dtype)
else:
assert isinstance(dtype, trt.DataType)
self._dtype = dtype
self._kv_dtype = dtype
self.quant_mode = quant_mode
if quant_mode.has_int8_kv_cache():
self._kv_dtype = str_dtype_to_trt('int8')
elif quant_mode.has_fp8_kv_cache():
self._kv_dtype = str_dtype_to_trt('fp8')
if isinstance(logits_dtype, str):
self._logits_dtype = str_dtype_to_trt(logits_dtype)
else:
assert isinstance(logits_dtype, trt.DataType)
self._logits_dtype = logits_dtype
self._num_layers = num_layers
self._num_heads = num_heads
self._hidden_size = hidden_size
self._vocab_size = vocab_size
self._tp_size = mapping.tp_size
super().__init__(num_layers, num_heads, hidden_size, vocab_size,
hidden_act, max_position_embeddings, rotary_dim, dtype,
mapping, quant_mode)
self._vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
self.lm_head = ColumnLinear(hidden_size,
self._vocab_size_padded,
bias=True,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
last_token_ids=None,
kv_cache_params=None,
attention_params=None):
hidden_states = super().forward(input_ids, use_cache, kv_cache_params,
attention_params)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = gather_last_token_logits(
hidden_states, last_token_ids,
default_net().plugin_config.remove_input_padding)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output('logits', self._logits_dtype)
if use_cache and default_net().plugin_config.paged_kv_cache == False:
for i, present in enumerate(presents):
present.mark_output(f'present_key_value_{i}', self._kv_dtype)
return (lm_logits, presents)
return lm_logits
def prepare_inputs(self,
max_batch_size,
max_input_len,
max_new_tokens,
use_cache,
max_beam_width,
max_num_tokens: int = None,
enable_two_optimization_profiles: bool = False):
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
# Prepare inputs
head_size = self._hidden_size // self._num_heads
num_heads = self._num_heads // self._tp_size
max_len = max_input_len + max_new_tokens
bb_range_gen = [
1, (max_batch_size * max_beam_width + 1) // 2,
max_batch_size * max_beam_width
]
bb_range_cxt = [1, (max_batch_size + 1) // 2, max_batch_size]
_bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
_beam_width_range = [1, (max_beam_width + 1) // 2, max_beam_width]
inlen_range_cxt = [1, (max_input_len + 1) // 2, max_input_len]
inlen_range_gen = [1, 1, 1]
_max_len_range = [0, (max_len + 1) // 2, max_len]
if enable_two_optimization_profiles:
bb_range = [bb_range_cxt, bb_range_gen]
bs_range = [_bs_range, _bs_range]
beam_width_range = [_beam_width_range, _beam_width_range]
inlen_range = [inlen_range_cxt, inlen_range_gen]
max_len_range = [_max_len_range, _max_len_range]
else:
bb_range = [bb_range_gen]
bs_range = [_bs_range]
beam_width_range = [_beam_width_range]
inlen_range = [inlen_range_cxt]
max_len_range = [_max_len_range]
if max_num_tokens is None:
num_tokens_range = [
1, max_batch_size * max_beam_width,
max(max_input_len * max_batch_size,
max_beam_width * max_batch_size)
]
else:
num_tokens_range = [1, (max_num_tokens + 1) // 2, max_num_tokens]
past_key_value = []
sequence_length = None
host_past_key_value_lengths = None
use_gpt_attention_plugin = default_net(
).plugin_config.gpt_attention_plugin
remove_input_padding = default_net().plugin_config.remove_input_padding
paged_kv_cache = default_net().plugin_config.paged_kv_cache
tokens_per_block = default_net().plugin_config.tokens_per_block
if remove_input_padding:
input_ids = Tensor(name='input_ids',
dtype=trt.int32,
shape=[1, -1],
dim_range=OrderedDict([
('batch_size_fake', [1]),
('num_tokens', [num_tokens_range]),
]))
position_ids = Tensor(name='position_ids',
dtype=trt.int32,
shape=[1, -1],
dim_range=OrderedDict([
('batch_size_fake', [1]),
('num_tokens', [num_tokens_range]),
]))
else:
input_ids = Tensor(name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_input_ids', bb_range),
('input_len', inlen_range),
]))
position_ids = Tensor(name='position_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_position_ids', bb_range),
('input_len', inlen_range),
]))
kv_cache_block_pointers_list = []
if not paged_kv_cache:
for i in range(self._num_layers):
kv_dim_range = OrderedDict([
('batch_size_kv', bb_range),
('kv', [2, 2] if enable_two_optimization_profiles else [2]),
('num_heads', [num_heads, num_heads]
if enable_two_optimization_profiles else [num_heads]),
('past_key_len', max_len_range),
('head_size', [head_size, head_size]
if enable_two_optimization_profiles else [head_size]),
])
kv = Tensor(name=f'past_key_value_{i}',
dtype=self._kv_dtype,
shape=[-1, 2, num_heads, -1, head_size],
dim_range=kv_dim_range)
past_key_value.append(kv)
# TODO: Remove this when TRT fix the named dimension
if not remove_input_padding:
assertion(shape(input_ids, 0) == shape(kv, 0), 'batch size')
kv_cache_block_pointers_list.append(None)
else:
max_blocks_per_seq_range = [
math.ceil(max_len_range[0][0] / tokens_per_block),
math.ceil(max_len_range[0][1] / tokens_per_block),
math.ceil(max_len_range[0][2] / tokens_per_block)
]
max_blocks_per_seq_range = [x for x in max_blocks_per_seq_range]
for i in range(self._num_layers):
# (blocks, 2, kv_num_heads, tokens_per_block, head_size)
kv_cache_block_pointers = Tensor(
name=f'kv_cache_block_pointers_{i}',
dtype=trt.int64,
shape=[-1, 2, -1],
dim_range=OrderedDict([
('batch_size', bb_range),
('kv', [2]),
('max_blocks_per_seq', [max_blocks_per_seq_range]),
]))
kv_cache_block_pointers_list.append(kv_cache_block_pointers)
past_key_value.append(None)
if use_gpt_attention_plugin:
dim_range = bb_range
host_past_key_value_lengths = Tensor(
name='host_past_key_value_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict(batch_size_kvl=dim_range))
context_lengths = None
host_context_lengths = None
host_request_types = None
if use_gpt_attention_plugin and remove_input_padding:
host_context_lengths = Tensor(name='host_context_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size',
bb_range)]))
if use_gpt_attention_plugin:
sequence_length = Tensor(
name='sequence_length',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size', bb_range)]),
)
context_lengths = Tensor(name='context_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size',
bb_range)]))
host_request_types = Tensor(name='host_request_types',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size',
bb_range)]))
last_token_ids = Tensor(name='last_token_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size', bb_range),
]))
cache_indirection = Tensor(name='cache_indirection',
dtype=trt.int32,
shape=[-1, -1, -1],
dim_range=OrderedDict([
('batch_size_cache', bs_range),
('beam_width', beam_width_range),
('max_seq_len', max_len_range),
]))
return (input_ids, position_ids, True, last_token_ids,
KeyValueCacheParams(
past_key_value=past_key_value,
host_past_key_value_lengths=host_past_key_value_lengths,
kv_cache_block_pointers=kv_cache_block_pointers_list,
cache_indirection=cache_indirection,
),
AttentionParams(sequence_length=sequence_length,
context_lengths=context_lengths,
host_context_lengths=host_context_lengths,
max_context_length=max_input_len,
host_request_types=host_request_types))