forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
236 lines (212 loc) · 9.45 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from collections import OrderedDict
import onnx
import tensorrt as trt
from onnx import TensorProto, helper
import tensorrt_llm
from tensorrt_llm.builder import Builder
from tensorrt_llm.functional import assertion, shape
from tensorrt_llm.network import net_guard
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--dtype', type=str, default='float32')
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=51200)
parser.add_argument('--n_layer', type=int, default=24)
parser.add_argument('--n_positions', type=int, default=1024)
parser.add_argument('--n_embd', type=int, default=1024)
parser.add_argument('--n_head', type=int, default=16)
parser.add_argument('--hidden_act', type=str, default='gelu')
parser.add_argument('--max_batch_size', type=int, default=256)
parser.add_argument('--max_input_len', type=int, default=200)
parser.add_argument('--max_output_len', type=int, default=200)
parser.add_argument('--use_gpt_attention_plugin',
default=False,
action='store_true')
parser.add_argument('--use_gemm_plugin', default=False, action='store_true')
parser.add_argument('--use_layernorm_plugin',
default=False,
action='store_true')
parser.add_argument('--output_dir', type=str, default='gpt_outputs')
return parser.parse_args()
def prepare_inputs(args):
# Prepare inputs
head_size = args.n_embd // args.n_head
max_len = args.max_input_len + args.max_output_len
bs_range = [1, (args.max_batch_size + 1) // 2, args.max_batch_size]
inlen_range = [1, (args.max_input_len + 1) // 2, args.max_input_len]
max_len_range = [1, (max_len + 1) // 2, max_len]
step_range = [1, 1, args.max_input_len + 1]
input_ids = tensorrt_llm.Tensor(name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size', [bs_range, bs_range]),
('input_len', [inlen_range, 1]),
]))
kv_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
past_key_value = []
sequence_length = None
shape_tensor = None
if not args.use_gpt_attention_plugin:
for i in range(args.n_layer):
kv_dim_range = OrderedDict([
('batch_size', [bs_range, bs_range]),
('num_heads', [args.n_head, args.n_head]),
('past_key_len', [0, max_len_range]),
('head_size', [head_size, head_size]),
])
k = tensorrt_llm.Tensor(name=f'past_key_{i}',
dtype=kv_dtype,
shape=[-1, args.n_head, -1, head_size],
dim_range=kv_dim_range)
v = tensorrt_llm.Tensor(name=f'past_value_{i}',
dtype=kv_dtype,
shape=[-1, args.n_head, -1, head_size],
dim_range=kv_dim_range)
past_key_value.append((k, v))
# TODO(kaiyu): Remove this when TRT fix the named dimension
assertion(shape(input_ids, 0) == shape(k, 0), 'batch size')
assertion(shape(k, 2) == shape(v, 2), 'kv cache len')
else:
for i in range(args.n_layer):
past_key_value.append(
tensorrt_llm.Tensor(
name=f'past_{i}',
dtype=kv_dtype,
shape=[2, -1, args.n_head, -1, head_size],
dim_range=OrderedDict([
('2', [2, 2]), ('batch_size', [bs_range, bs_range]),
('num_heads', [args.n_head, args.n_head]),
('past_key_len', [max_len_range, max_len_range]),
('head_size', [head_size, head_size])
]),
))
sequence_length = tensorrt_llm.Tensor(
name='sequence_length',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size', [bs_range, bs_range])]),
)
shape_tensor = tensorrt_llm.Tensor(
name='shape_tensor',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('step', [step_range, max_len_range]),
('cur_seq_len', [0, max_len_range])]))
return (input_ids, None, past_key_value, sequence_length, shape_tensor,
True)
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
tensorrt_llm.set_default_dtype(args.dtype)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
kv_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
builder = Builder()
# Initialize Module
apply_query_key_layer_scaling = False
tensorrt_llm_gpt = tensorrt_llm.models.GPTLMHeadModel(
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
dtype=kv_dtype,
tensor_parallel=args.world_size, # TP only
tensor_parallel_group=list(range(args.world_size)), # TP only
apply_query_key_layer_scaling=apply_query_key_layer_scaling)
# Module -> Network
network = builder.create_network()
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin()
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin()
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin()
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
# Forward
inputs = prepare_inputs(args)
lm_logits, presents = tensorrt_llm_gpt(*inputs)
# Mark outputs
lm_logits.mark_output('logits', kv_dtype)
if not args.use_gpt_attention_plugin:
for i, present in enumerate(presents):
k, v = present
k.mark_output(f'present_key_{i}', kv_dtype)
v.mark_output(f'present_value_{i}', kv_dtype)
else:
for i, present in enumerate(presents):
present.mark_output(f'present_{i}', kv_dtype)
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)