-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlayers.py
649 lines (556 loc) · 23 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# -*- encoding: utf-8 -*-
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree. An additional grant
# of patent rights can be found in the PATENTS file in the same directory.
import torch
torch.manual_seed(0)
torch.cuda.manual_seed(0)
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
# Origin: https://github.com/facebookresearch/ParlAI/tree/master/parlai/agents/drqa
# ------------------------------------------------------------------------------
# Modules
# ------------------------------------------------------------------------------
import cuda_functional as MF
class StackedBRNNLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers,
dropout_rate=0, dropout_output=False, rnn_type=nn.LSTM,
concat_layers=False, padding=False):
super(StackedBRNNLSTM, self).__init__()
self.padding = padding
self.dropout_output = dropout_output
self.dropout_rate = dropout_rate
self.num_layers = num_layers
self.concat_layers = concat_layers
self.rnns = nn.ModuleList()
for i in range(num_layers):
input_size = input_size if i == 0 else 2 * hidden_size
self.rnns.append(rnn_type(input_size, hidden_size,
num_layers=1,
bidirectional=True))
def forward(self, x):
"""Can choose to either handle or ignore variable length sequences.
Always handle padding in eval.
"""
# No padding necessary.
return self._forward_unpadded(x)
if x_mask.data.sum() == 0:
return self._forward_unpadded(x)
# Pad if we care or if its during eval.
if self.padding or not self.training:
return self._forward_padded(x, x_mask)
# We don't care.
return self._forward_unpadded(x)
def _forward_unpadded(self, x):
"""Faster encoding that ignores any padding."""
# Transpose batch and sequence dims
x = x.transpose(0, 1).contiguous()
# Encode all layers
outputs = [x]
for i in range(self.num_layers):
rnn_input = outputs[-1]
# Apply dropout to hidden input
if self.dropout_rate > 0:
rnn_input = F.dropout(rnn_input,
p=self.dropout_rate,
training=self.training)
# Forward
rnn_output = self.rnns[i](rnn_input)[0]
outputs.append(rnn_output)
# Concat hidden layers
if self.concat_layers:
output = torch.cat(outputs[1:], 2)
else:
output = outputs[-1]
# Transpose back
output = output.transpose(0, 1).contiguous()
# Dropout on output layer
if self.dropout_output and self.dropout_rate > 0:
output = F.dropout(output,
p=self.dropout_rate,
training=self.training)
return output
def _forward_padded(self, x, x_mask):
"""Slower (significantly), but more precise,
encoding that handles padding."""
# Compute sorted sequence lengths
lengths = x_mask.data.eq(0).long().sum(1).squeeze()
_, idx_sort = torch.sort(lengths, dim=0, descending=True)
_, idx_unsort = torch.sort(idx_sort, dim=0)
lengths = list(lengths[idx_sort])
idx_sort = Variable(idx_sort)
idx_unsort = Variable(idx_unsort)
# Sort x
x = x.index_select(0, idx_sort)
# Transpose batch and sequence dims
x = x.transpose(0, 1).contiguous()
# Pack it up
rnn_input = nn.utils.rnn.pack_padded_sequence(x, lengths)
# Encode all layers
outputs = [rnn_input]
for i in range(self.num_layers):
rnn_input = outputs[-1]
# Apply dropout to input
if self.dropout_rate > 0:
dropout_input = F.dropout(rnn_input.data,
p=self.dropout_rate,
training=self.training)
rnn_input = nn.utils.rnn.PackedSequence(dropout_input,
rnn_input.batch_sizes)
outputs.append(self.rnns[i](rnn_input)[0])
# Unpack everything
for i, o in enumerate(outputs[1:], 1):
outputs[i] = nn.utils.rnn.pad_packed_sequence(o)[0]
# Concat hidden layers or take final
if self.concat_layers:
output = torch.cat(outputs[1:], 2)
else:
output = outputs[-1]
# Transpose and unsort
output = output.transpose(0, 1).contiguous()
output = output.index_select(0, idx_unsort)
# Dropout on output layer
if self.dropout_output and self.dropout_rate > 0:
output = F.dropout(output,
p=self.dropout_rate,
training=self.training)
return output
class StackedBRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers,
dropout_rate=0, dropout_output=False, rnn_type=nn.LSTM,
concat_layers=False, use_tanh=1, bidirectional=True, res_net=False, get_all_layers=False): # 训练都不padding 这里还要改一下
super(StackedBRNN, self).__init__()
self.dropout_output = dropout_output
self.dropout_rate = dropout_rate
self.num_layers = num_layers
self.res_net = res_net
self.concat_layers = concat_layers
self.get_all_layers = get_all_layers
self.rnns = nn.ModuleList()
for i in range(num_layers):
input_size = input_size if i == 0 else 2 * hidden_size
#self.rnns.append(rnn_type(input_size, hidden_size,
# num_layers=1,
# bidirectional=True))
self.rnns.append(MF.SRUCell(input_size, hidden_size,
dropout=dropout_rate,
rnn_dropout=dropout_rate,
use_tanh=use_tanh,
bidirectional=bidirectional))
def forward(self, x):
"""Can choose to either handle or ignore variable length sequences.
Always handle padding in eval.
"""
# No padding necessary.
# if x_mask.data.sum() == 0:
# return self._forward_unpadded(x, x_mask)
# Pad if we care or if its during eval.
#if self.padding or not self.training:
# return self._forward_padded(x, x_mask)
# We don't care.
return self._forward_unpadded(x)
def _forward_unpadded(self, x):
"""Faster encoding that ignores any padding."""
# Transpose batch and sequence dims
x = x.transpose(0, 1)
# Encode all layers
outputs = [x]
for i in range(self.num_layers):
rnn_input = outputs[-1]
# Apply dropout to hidden input
# if self.dropout_rate > 0:
# rnn_input = F.dropout(rnn_input,
# p=self.dropout_rate,
# training=self.training)
# Forward
rnn_output = self.rnns[i](rnn_input)[0]
outputs.append(rnn_output)
# Concat hidden layers
if self.concat_layers:
output = torch.cat(outputs[1:], 2)
elif self.get_all_layers:
output = outputs[1:]
elif self.res_net:
output = outputs[1]
for o in outputs[2:]:
output = output + o
else:
output = outputs[-1]
if self.get_all_layers:
# Transpose back
output = [o.transpose(0, 1) for o in output]
if self.dropout_output and self.dropout_rate > 0:
output = [F.dropout(o, p=self.dropout_rate, training=self.training).contiguous() for o in output]
else:
output = output.transpose(0, 1)
# Dropout on output layer
if self.dropout_output and self.dropout_rate > 0:
output = F.dropout(output, p=self.dropout_rate, training=self.training)
output = output.contiguous()
return output
def _forward_padded(self, x, x_mask):
"""Slower (significantly), but more precise,
encoding that handles padding."""
# Compute sorted sequence lengths
lengths = x_mask.data.eq(0).long().sum(1)
_, idx_sort = torch.sort(lengths, dim=0, descending=True)
_, idx_unsort = torch.sort(idx_sort, dim=0)
lengths = list(lengths[idx_sort])
idx_sort = Variable(idx_sort)
idx_unsort = Variable(idx_unsort)
# Sort x
x = x.index_select(0, idx_sort)
# Transpose batch and sequence dims
x = x.transpose(0, 1)
# Pack it up
rnn_input = nn.utils.rnn.pack_padded_sequence(x, lengths)
# Encode all layers
outputs = [rnn_input]
for i in range(self.num_layers):
rnn_input = outputs[-1]
# Apply dropout to input
if self.dropout_rate > 0:
dropout_input = F.dropout(rnn_input.data,
p=self.dropout_rate,
training=self.training)
rnn_input = nn.utils.rnn.PackedSequence(dropout_input,
rnn_input.batch_sizes)
outputs.append(self.rnns[i](rnn_input)[0])
# Unpack everything
for i, o in enumerate(outputs[1:], 1):
outputs[i] = nn.utils.rnn.pad_packed_sequence(o)[0]
# Concat hidden layers or take final
if self.concat_layers:
output = torch.cat(outputs[1:], 2)
else:
output = outputs[-1]
# Transpose and unsort
output = output.transpose(0, 1)
output = output.index_select(0, idx_unsort)
# Dropout on output layer
if self.dropout_output and self.dropout_rate > 0:
output = F.dropout(output,
p=self.dropout_rate,
training=self.training)
return output
class MyConv(nn.Module):
def __init__(self, emb_dim, filter_nums, window_sizes, cnn_out_drop):
super(MyConv, self).__init__()
self.cnn_out_drop = cnn_out_drop
self.convs = nn.ModuleList([
nn.Conv2d(1, filter_num, [window_size, emb_dim], padding=(window_size - 1, 0))
for filter_num, window_size in zip(filter_nums, window_sizes)])
def forward(self, in_xs):
"""
:param in_xs: batch_size * len * dim
:return:
"""
in_xs = torch.unsqueeze(in_xs, 1) # [B, C, T, E] Add a channel dim.
xs = []
for conv in self.convs:
x2 = F.relu(conv(in_xs)) # [B, F, T, 1]
if self.cnn_out_drop > 0:
x2 = F.dropout(x2, self.cnn_out_drop)
x2 = torch.squeeze(x2, -1) # [B, F, T]
x2 = F.max_pool1d(x2, x2.size(2)) # [B, F, 1]
x2 = x2.squeeze(-1)
xs.append(x2)
x = torch.cat(xs, 1)
return x # fts
class SeqAttnMatch(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * y_j) for i in X
* alpha_j = softmax(y_j * x_i)
"""
def __init__(self, input_size, identity=False):
super(SeqAttnMatch, self).__init__()
if not identity:
self.linear = nn.Linear(input_size, input_size)
else:
self.linear = None
def forward(self, x, y, y_mask, need_attention=False):
"""Input shapes:
x = batch * len1 * h
y = batch * len2 * h
y_mask = batch * len2
Output shapes:
matched_seq = batch * len1 * h
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.contiguous().view(-1, x.size(2))).contiguous().view(x.size())
x_proj = F.relu(x_proj)
y_proj = self.linear(y.view(-1, y.size(2))).view(y.size())
y_proj = F.relu(y_proj)
else:
x_proj = x
y_proj = y
# Compute scores
scores = x_proj.bmm(y_proj.transpose(2, 1))
# 都不加啥transform吗? dot product; bilinear form; additive projection 后面这两种要不要加一下?
# Mask padding
y_mask = y_mask.unsqueeze(1).expand(scores.size())
if torch.sum(y_mask).data[0] != 0:
scores.data.masked_fill_(y_mask.data, -float('inf'))
# Normalize with softmax
alpha_flat = F.softmax(scores.view(-1, y.size(1)), dim=-1)
alpha = alpha_flat.view(-1, x.size(1), y.size(1))
# Take weighted average
matched_seq = alpha.bmm(y)
if not need_attention:
return matched_seq
return matched_seq, alpha
class SeqAttnMatchNoMask(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * y_j) for i in X
* alpha_j = softmax(y_j * x_i)
"""
def __init__(self, input_size, identity=False):
super(SeqAttnMatchNoMask, self).__init__()
if not identity:
self.linear = nn.Linear(input_size, input_size)
else:
self.linear = None
def forward(self, x, y, need_attention=False):
"""Input shapes:
x = batch * len1 * h
y = batch * len2 * h
y_mask = batch * len2
Output shapes:
matched_seq = batch * len1 * h
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.contiguous().view(-1, x.size(2))).contiguous().view(x.size())
x_proj = F.relu(x_proj)
y_proj = self.linear(y.contiguous().view(-1, y.size(2))).contiguous().view(y.size())
y_proj = F.relu(y_proj)
else:
x_proj = x
y_proj = y
# Compute scores
scores = x_proj.bmm(y_proj.transpose(2, 1))
# 都不加啥transform吗? dot product; bilinear form; additive projection 后面这两种要不要加一下?
# # Mask padding
# y_mask = y_mask.unsqueeze(1).expand(scores.size())
# scores.data.masked_fill_(y_mask.data, -float('inf'))
# Normalize with softmax
# print(scores, 'not normed')
alpha_flat = F.softmax(scores.view(-1, y.size(1)), dim=-1)
# alpha_flat1 = F.softmax(scores.view(y.size(0), -1), dim=-1)
# alpha1 = alpha_flat1.view(-1, x.size(1), y.size(1))
# print(alpha1)
alpha = alpha_flat.view(-1, x.size(1), y.size(1))
# print(alpha)
# Take weighted average
matched_seq = alpha.bmm(y)
if not need_attention:
return matched_seq
return matched_seq, alpha
class SeqAttnMatchGLBNormNoMask(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * y_j) for i in X
* alpha_j = softmax(y_j * x_i)
"""
def __init__(self, input_size, identity=False):
super(SeqAttnMatchGLBNormNoMask, self).__init__()
if not identity:
self.linear = nn.Linear(input_size, input_size)
else:
self.linear = None
def forward(self, x, y, need_attention=False):
"""Input shapes:
x = batch * len1 * h
y = batch * len2 * h
y_mask = batch * len2
Output shapes:
matched_seq = batch * len1 * h
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.contiguous().view(-1, x.size(2))).contiguous().view(x.size())
x_proj = F.relu(x_proj)
y_proj = self.linear(y.contiguous().view(-1, y.size(2))).contiguous().view(y.size())
y_proj = F.relu(y_proj)
else:
x_proj = x
y_proj = y
# Compute scores
scores = x_proj.bmm(y_proj.transpose(2, 1))
# 都不加啥transform吗? dot product; bilinear form; additive projection 后面这两种要不要加一下?
# # Mask padding
# y_mask = y_mask.unsqueeze(1).expand(scores.size())
# scores.data.masked_fill_(y_mask.data, -float('inf'))
# Normalize with softmax
alpha_flat = F.softmax(scores.view(-1, y.size(1)), dim=-1)
alpha_flat = F.softmax(scores.view(y.size(0), -1), dim=-1)
alpha = alpha_flat.view(-1, x.size(1), y.size(1))
# Take weighted average
matched_seq = alpha.bmm(y)
if not need_attention:
return matched_seq
return matched_seq, alpha
class SeqAttnMatchOptMaskSpSoftmax(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * y_j) for i in X
* alpha_j = softmax(y_j * x_i)
"""
def __init__(self, input_size, identity=False):
super(SeqAttnMatchNoMask, self).__init__()
if not identity:
self.linear = nn.Linear(input_size, input_size)
else:
self.linear = None
def forward(self, x, y, y_mask=None, need_attention=False):
"""Input shapes:
x = batch * len1 * h
y = batch * len2 * h
y_mask = batch * len2
Output shapes:
matched_seq = batch * len1 * h
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.contiguous().view(-1, x.size(2))).contiguous().view(x.size())
x_proj = F.relu(x_proj)
y_proj = self.linear(y.view(-1, y.size(2))).view(y.size())
y_proj = F.relu(y_proj)
else:
x_proj = x
y_proj = y
# Compute scores
scores = x_proj.bmm(y_proj.transpose(2, 1))
# 都不加啥transform吗? dot product; bilinear form; additive projection 后面这两种要不要加一下?
# # Mask padding
if y_mask:
y_mask = y_mask.unsqueeze(1).expand(scores.size())
scores.data.masked_fill_(y_mask.data, -float('inf'))
# Normalize with softmax
alpha_flat = F.softmax(scores.view(x.size(0), x.size(1), * y.size(1)), dim=-1).view(-1, y.size(1))
# alpha_flat = F.softmax(scores.view(-1, y.size(1)), dim=-1)
alpha = alpha_flat.view(-1, x.size(1), y.size(1))
# Take weighted average
matched_seq = alpha.bmm(y)
if not need_attention:
return matched_seq
return matched_seq, alpha
class SeqAttnWeights(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * y_j) for i in X
* alpha_j = softmax(y_j * x_i)
"""
def __init__(self, x_input_size, y_input_size, mapped_dim):
super(SeqAttnWeights, self).__init__()
self.mapped_dim = mapped_dim
self.linear1 = nn.Linear(x_input_size, mapped_dim)
self.linear2 = nn.Linear(y_input_size, mapped_dim)
self.o_liner = nn.Linear(self.mapped_dim, 1)
def forward(self, x, y, y_mask):
"""Input shapes:
x = batch * len1 * h
y = batch * len2 * h
y_mask = batch * len2
Output shapes:
matched_seq = batch * len1 * h
"""
# Project vectors
bs, len_x, dim_x = x.size()
len_y = y.size(1)
x_proj = self.linear1(x.view(-1, x.size(2))).view(bs, len_x, self.mapped_dim)
x_proj = F.relu(x_proj) # 这个激活函数合适吗?
y_proj = self.linear2(y.view(-1, y.size(2))).view(bs, len_y, self.mapped_dim)
y_proj = F.relu(y_proj)
x_exp = x_proj.unsqueeze(2).expand(bs, len_x, len_y, self.mapped_dim)
y_exp = y_proj.unsqueeze(1).expand(bs, len_x, len_y, self.mapped_dim)
raw_att_vs = self.o_liner(x_exp + y_exp).view(bs, len_x, len_y)
# Mask padding
y_mask = y_mask.unsqueeze(1).expand(raw_att_vs.size())
raw_att_vs.data.masked_fill_(y_mask.data, -float(10000000))
# 加一个fill nan with zero
# Normalize with softmax
alpha_flat = F.softmax(raw_att_vs.view(-1, y.size(1)))
alpha = alpha_flat.view(-1, len_x, len_y)
# i need bs * len1 * len2
return alpha
class BilinearSeqAttn(nn.Module):
"""A bilinear attention layer over a sequence X w.r.t y:
* o_i = softmax(x_i'Wy) for x_i in X.
Optionally don't normalize output weights.
"""
def __init__(self, x_size, y_size, identity=False):
super(BilinearSeqAttn, self).__init__()
if not identity:
self.linear = nn.Linear(y_size, x_size)
else:
self.linear = None
def forward(self, x, y, x_mask=None):
"""
x = batch * len * h1
y = batch * h2
x_mask = batch * len
"""
Wy = self.linear(y) if self.linear is not None else y
xWy = x.bmm(Wy.unsqueeze(2)).squeeze(2)
# xWy.data.masked_fill_(x_mask.data, -float('inf'))
if x_mask is not None:
xWy.data.masked_fill_(x_mask.data, -float(2*10**38))
if self.training:
# In training we output log-softmax for NLL
alpha = F.log_softmax(xWy)
else:
# ...Otherwise 0-1 probabilities
alpha = F.softmax(xWy)
return alpha
class LinearSeqAttn(nn.Module):
"""Self attention over a sequence:
* o_i = softmax(Wx_i) for x_i in X.
"""
def __init__(self, input_size):
super(LinearSeqAttn, self).__init__()
self.linear = nn.Linear(input_size, 1)
def forward(self, x, x_mask=None):
"""
x = batch * len * hdim
x_mask = batch * len
"""
x_flat = x.view(-1, x.size(-1))
scores = self.linear(x_flat).view(x.size(0), x.size(1))
if x_mask is not None:
scores.data.masked_fill_(x_mask.data, -float('inf'))
alpha = F.softmax(scores, -1)
return alpha
class LinearSeqAttnNoMask(nn.Module):
"""Self attention over a sequence:
* o_i = softmax(Wx_i) for x_i in X.
"""
def __init__(self, input_size):
super(LinearSeqAttnNoMask, self).__init__()
self.linear = nn.Linear(input_size, 1)
def forward(self, x):
"""
x = batch * len * hdim
x_mask = batch * len
"""
x_flat = x.view(-1, x.size(-1))
scores = self.linear(x_flat).view(x.size(0), x.size(1))
alpha = F.softmax(scores)
return alpha
# ------------------------------------------------------------------------------
# Functional
# ------------------------------------------------------------------------------
def uniform_weights(x, x_mask):
"""Return uniform weights over non-masked input."""
alpha = Variable(torch.ones(x.size(0), x.size(1)))
if x.data.is_cuda:
alpha = alpha.cuda()
alpha = alpha * x_mask.eq(0).float()
alpha = alpha / alpha.sum(1, keepdim=True).expand(alpha.size())
return alpha
def weighted_avg(x, weights):
"""x = batch * len * d
weights = batch * len
"""
return weights.unsqueeze(1).bmm(x).squeeze(1)