-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcomment_emb.py
174 lines (135 loc) · 5.57 KB
/
comment_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import math
import pandas as pd
import os
import json
import numpy as np
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
HfArgumentParser,
set_seed,
)
from peft import (
PeftModel,
TaskType,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
import torch
from tqdm.notebook import tqdm
import pickle
from arguments import ModelArguments, DataArguments, TrainingArguments
from model.model import RecComModel
def load_json(file):
with open(file, "r", encoding="utf-8") as f:
data = json.load(f)
return data
def load_pkl(file):
with open(file, 'rb') as file:
data = pickle.load(file)
return data
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_id", type=int, default=0, help='ID of running GPU')
parser.add_argument("--lora_ckpt", type=str,
default="./ckpt/LSVCR/")
parser.add_argument("--lora", action="store_true", default=True)
parser.add_argument("--batch_index", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1000000)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
print(vars(args))
model_args = ModelArguments()
data_args = DataArguments()
device = torch.device("cuda", args.gpu_id)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path,
model_max_length=512,
trust_remote_code=True)
data_path = data_args.data_path
print(data_path)
all_photos = load_pkl(os.path.join(data_path, "all_photos.pkl"))
n_photos = len(all_photos)
comments = load_json(os.path.join(data_path, "comment.json"))
if args.lora:
model = RecComModel.from_pretrained(
model_args.model_name_or_path,
n_photos=n_photos,
args=model_args,
empty_init=False,
torch_dtype=torch.bfloat16,
# device_map=None,
).to(torch.bfloat16)
print(model.llm_emb_mlp[0].weight)
print(model.contrast_adapter.weight)
model = PeftModel.from_pretrained(
model,
args.lora_ckpt,
torch_dtype=torch.bfloat16
)
print(model.llm_emb_mlp.modules_to_save['default'][0].weight)
print(model.contrast_adapter.modules_to_save['default'].weight)
else:
model = AutoModel.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model = model.to(device)
all_comments = sorted(list(comments.keys()))
n_comments = len(all_comments)
print("Total comments:", n_comments)
print("Total batch:", math.ceil(n_comments/args.batch_size))
print("Current batch:", args.batch_index + 1)
start = args.batch_index * args.batch_size
end = min((args.batch_index + 1) * args.batch_size, n_comments)
print("Batch range:", start, end)
batch_comments = all_comments[start:end]
comment_text = {}
for comment in batch_comments:
text = comments[str(comment)]["content"]
comment_text[comment] = text
comment_emb = {}
comment_emb_full = {}
with torch.no_grad():
for i, com in tqdm(enumerate(batch_comments)):
if (i + 1) % 1000 == 0:
print("==>", (i + 1))
text = comment_text[com]
inputs = tokenizer(text, max_length=512, truncation=True, return_tensors='pt', padding="longest").to(device)
if args.lora:
text_emb, text_emb_full = model.base_model.model.get_text_hidden_states(inputs)
if i == 0:
test_emb = model(**inputs, return_dict=True).hidden_states
test_emb = test_emb.transpose(0, 1).contiguous() * inputs['attention_mask'].unsqueeze(-1)
test_emb = test_emb.sum(dim=1) / inputs['attention_mask'].sum(dim=-1, keepdim=True)
assert torch.all(text_emb_full == test_emb)
text_emb = text_emb.squeeze().detach().to(torch.float32).cpu().numpy()
text_emb_full = text_emb_full.squeeze().detach().to(torch.float32).cpu().numpy()
text_emb = np.nan_to_num(text_emb, nan=0.0, posinf=0.0, neginf=0.0)
text_emb_full = np.nan_to_num(text_emb_full, nan=0.0, posinf=0.0, neginf=0.0)
comment_emb[com] = text_emb
comment_emb_full[com] = text_emb_full
else:
text_emb = model.transformer(**inputs)[0]
text_emb = text_emb.transpose(0, 1).contiguous() * inputs['attention_mask'].unsqueeze(-1)
text_emb = text_emb.sum(dim=1) / inputs['attention_mask'].sum(dim=-1, keepdim=True)
text_emb = text_emb.squeeze().detach().to(torch.float32).cpu().numpy()
text_emb = np.nan_to_num(text_emb, nan=0.0, posinf=0.0, neginf=0.0)
comment_emb[com] = text_emb
if args.lora:
file_name = "comment_embs_{}_{}.pkl".format(start, end)
else:
file_name = "comment_embs_chatglm3_{}_{}.pkl".format(start, end)
with open(os.path.join(data_path, file_name), 'wb') as file:
pickle.dump(comment_emb, file)
all_comments = ['[PAD]'] + sorted(list(comments.keys()))
print(all_comments[:10])
if args.lora:
file_name = "comment_full_embs_{}_{}.pkl".format(start, end)
with open(os.path.join(data_path, file_name), 'wb') as file:
pickle.dump(comment_emb_full, file)