forked from bubbliiiing/yolov7-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
summary.py
32 lines (28 loc) · 1.34 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#--------------------------------------------#
# 该部分代码用于看网络结构
#--------------------------------------------#
import torch
from thop import clever_format, profile
from nets.yolo import YoloBody
if __name__ == "__main__":
input_shape = [640, 640]
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
num_classes = 80
phi = 'l'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
m = YoloBody(anchors_mask, num_classes, phi, False).to(device)
for i in m.children():
print(i)
print('==============================')
dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
flops, params = profile(m.to(device), (dummy_input, ), verbose=False)
#--------------------------------------------------------#
# flops * 2是因为profile没有将卷积作为两个operations
# 有些论文将卷积算乘法、加法两个operations。此时乘2
# 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
# 本代码选择乘2,参考YOLOX。
#--------------------------------------------------------#
flops = flops * 2
flops, params = clever_format([flops, params], "%.3f")
print('Total GFLOPS: %s' % (flops))
print('Total params: %s' % (params))