-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
54 lines (48 loc) · 2.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import math
import numpy as np
import pandas as pd
import h2o
from tabular_toolbox.metrics import calc_score
binaryclass_metrics = ['auc','f1', 'accuracy', 'recall','precision']
multiclass_metircs = ['auc','f1', 'accuracy', 'recall','precision']
regression_metrics = ['rmse', 'r2', 'mse', 'mae','msle']
def eval_socres(data, label, model, task_type, method_name=None):
if task_type in ['binary', 'multiclass']:
if method_name != 'h2o':
X_data = data.copy()
y_ture = X_data.pop(label)
y_preds = model.predict(X_data)
if method_name == 'autogluon':
y_probs = model.predict_proba(X_data).values
else:
if method_name != 'autokeras':
y_probs = model.predict_proba(X_data)
else:
y_preds = pd.Series(y_preds)
y_probs = None
else:
test = h2o.H2OFrame(data.copy())
preds_df = model.predict(test).as_data_frame(use_pandas=True)
y_ture = data[label]
y_preds = preds_df.iloc[:, 0].values
y_probs = preds_df.iloc[:, 1:].values
if task_type == 'binary':
metrics = binaryclass_metrics
elif task_type == 'multiclass':
metrics = multiclass_metircs
score = calc_score(y_ture, y_preds, y_probs, task=task_type, metrics=metrics)
else: # regression
if method_name != 'h2o':
X_data = data.copy()
y_ture = X_data.pop(label)
y_preds = nozeros_process(model.predict(X_data))
else:
test = h2o.H2OFrame(data.copy())
preds_df = model.predict(test).as_data_frame(use_pandas=True)
y_ture = data[label]
y_preds = nozeros_process(preds_df.iloc[:, 0].values)
metrics = regression_metrics
score = calc_score(y_ture, y_preds, task=task_type, metrics=metrics)
return score
def nozeros_process(data):
return np.array(list(map(lambda x: max(x, 0), data))).reshape(-1, 1)