-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlca.py
58 lines (46 loc) · 1.34 KB
/
lca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
""" LCA Implementaion for multiscale Laplacian Pyramid """
def sparsify(I, G, Phi, lambdav, iterations=150, eta=0.1):
def g(u, theta, thresh_type='soft'):
"""
LCA threshold function
u: coefficients
theta: threshold value
"""
if thresh_type == 'hard':
a = u;
a[np.abs(a) < theta] = 0
return a
elif thresh_type == 'soft':
a = np.abs(u)-theta
a[a<0] = 0
a = np.sign(u)*a
return a
scales = len(G)
(base_image_dim, batch) = I.shape
# Gamma = <(G_0*Phi_0 + G_1*Phi_1 + G_2*Phi_2), (G_0*Phi_0 + G_1*Phi_1 + G_2*Phi_2)>
# b = <(G_0*Phi_0 + G_1*Phi_1 + G_2*Phi_2), I>
M = sps.hstack([G[s]*Phi[s] for s in range(scales)]).tocsr()
total_neurons = M.shape[1]
Gamma = M.T * M - sps.eye(total_neurons, total_neurons)
Gamma = Gamma.tocsr()
b = M.T.dot(I)
u = np.zeros((M.shape[1],batch))
l = 0.5 * np.max(np.abs(b), axis=0)
a = g(u,l, 'soft')
olda = a
t = 0
while (t < iterations+1) or (np.sqrt(np.sum((olda-a)**2)) > 10e5):
olda = a
u = eta * (b-Gamma.dot(a)) + (1-eta) * u
a = g(u,l, 'soft')
l = 0.95 * l
l[l < lambdav] = lambdav
# print np.sum((a-olda)**2)
t += 1
print np.sum((a-olda)**2)
A = range(scales)
for s in range(scales):
neurons = Phi[s].shape[1]
A[s] = a[:neurons,:]
a = a[neurons:,:]
return A