-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmodel.py
48 lines (38 loc) · 1.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Import the necessary libraries
import numpy as np
import matplotlib.pyplot as plot
import pandas
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
def import_data_and_split():
# Import the dataset
d = pandas.read_csv('data.csv')
x = d.iloc[:, :-1].values
y = d.iloc[:, 1].values
# Split the dataset into the training set and test set
# We're splitting the data in 1/3, so out of 30 rows, 20 rows will go into the training set,
# and 10 rows will go into the testing set.
xTrain, xtest, y_Train, yTest = train_test_split(x, y, test_size =1 / 3, random_state = 0)
return (xTrain, xtest, y_Train, yTest)
if __name__ == '__main__':
xTrain, xtest, y_Train, yTest = import_data_and_split()
# Creating a LinearRegression object and fitting it
# on our trainging set.
linearRegressor = LinearRegression()
linearRegressor.fit(xTrain, y_Train)
# Predicting the test set results
yPrediction = linearRegressor.predict(xtest)
# Visualising the training set results
plot.scatter(xTrain, y_Train, color ='red')
plot.plot(xTrain, linearRegressor.predict(xTrain), color = 'blue')
plot.title('Salary vs Experience (Training set)')
plot.xlabel('Years of Experience')
plot.ylabel('Salary')
plot.show()
# Visualising the test set results
plot.scatter(xtest, yTest, color ='red')
plot.plot(xtest, linearRegressor.predict(xtest), color ='blue')
plot.title('Salary vs Experience (Test set)')
plot.xlabel('Years of Experience')
plot.ylabel('Salary')
plot.show()