Skip to content

Latest commit

 

History

History
58 lines (49 loc) · 1.39 KB

README.md

File metadata and controls

58 lines (49 loc) · 1.39 KB

Deep Learning with TensorFlow 2.X

Implementations of neural network models with tf (>=2.0)

See also implementations with PyTorch 1.0 here.

Requirements

  • TensorFlow >= 2.0
$ pip install tensorflow

Models

  • Logistic Regression
  • MLP
  • LeNet
  • ResNet (ResNet34, ResNet50)
  • DenseNet (DenseNet121)
  • Encoder-Decoder (LSTM)
  • EncoderDecoder (Attention)
  • Transformer
  • Deep Q-Network
  • Variational Autoencoder
  • Generative Adversarial Network
models/
├── densenet121_cifar10_beginner.py
├── dqn_cartpole.py
├── encoder_decoder_attention.py
├── encoder_decoder_lstm.py
├── gan_fashion_mnist.py
├── lenet_mnist.py
├── lenet_mnist_beginner.py
├── logistic_regression_mnist.py
├── logistic_regression_mnist_beginner.py
├── mlp_mnist.py
├── mlp_mnist_beginner.py
├── resnet34_fashion_mnist.py
├── resnet34_fashion_mnist_beginner.py
├── resnet50_fashion_mnist.py
├── resnet50_fashion_mnist_beginner.py
├── transformer.py
├── vae_fashion_mnist.py
│
└── layers/
    ├── Attention.py
    ├── DotProductAttention.py
    ├── LayerNormalization.py
    ├── MultiHeadAttention.py
    ├── PositionalEncoding.py
    └── ScaledDotProductAttention.py

*_beginner.py is the file using only Keras.