forked from yaoyueduzhen/HomOTL-ODDM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJDA.m
155 lines (129 loc) · 4.47 KB
/
JDA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function [acc,acc_ite,A,Z] = JDA(X_src,Y_src,X_tar,Y_tar,options)
% This is the implementation of Joint Distribution Adaptation.
% Reference: Mingsheng Long et al. Transfer feature learning with joint distribution adaptation. ICCV 2013.
% Inputs:
%%% X_src : source feature matrix, ns * n_feature
%%% Y_src : source label vector, ns * 1
%%% X_tar : target feature matrix, nt * n_feature
%%% Y_tar : target label vector, nt * 1
%%% options : option struct
%%%%% lambda : regularization parameter
%%%%% dim : dimension after adaptation, dim <= n_feature
%%%%% kernel_tpye : kernel name, choose from 'primal' | 'linear' | 'rbf'
%%%%% gamma : bandwidth for rbf kernel, can be missed for other kernels
%%%%% T : n_iterations, T >= 1. T <= 10 is suffice
% Outputs:
%%% acc : final accuracy using knn, float
%%% acc_ite : list of all accuracies during iterations
%%% A : final adaptation matrix, (ns + nt) * (ns + nt)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set options
lambda = options.lambda;
dim = options.dim;
kernel_type = options.kernel_type;
gamma = options.gamma;
T = options.T;
acc_ite = [];
Y_tar_pseudo = [];
%% Iteration
for i = 1 : T
[Z,A] = JDA_core(X_src,Y_src,X_tar,Y_tar_pseudo,options);
%normalization for better classification performance
Z = Z*diag(sparse(1./sqrt(sum(Z.^2))));
Zs = Z(:,1:size(X_src,1));
Zt = Z(:,size(X_src,1)+1:end);
knn_model = fitcknn(Zs',Y_src,'NumNeighbors',1);
Y_tar_pseudo = knn_model.predict(Zt');
acc = length(find(Y_tar_pseudo==Y_tar))/length(Y_tar);
fprintf('JDA+NN=%0.4f\n',acc);
acc_ite = [acc_ite;acc];
end
end
function [Z,A] = JDA_core(X_src,Y_src,X_tar,Y_tar_pseudo,options)
%% Set options
lambda = options.lambda; %% lambda for the regularization
dim = options.dim; %% dim is the dimension after adaptation, dim <= m
kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf
gamma = options.gamma; %% gamma is the bandwidth of rbf kernel
%% Construct MMD matrix
X = [X_src',X_tar'];
X = X*diag(sparse(1./sqrt(sum(X.^2))));
[m,n] = size(X);
ns = size(X_src,1);
nt = size(X_tar,1);
e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)];
C = length(unique(Y_src));
%%% M0
M = e * e' * C; %multiply C for better normalization
%%% Mc
N = 0;
if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo)==nt
for c = reshape(unique(Y_src),1,C)
e = zeros(n,1);
e(Y_src==c) = 1 / length(find(Y_src==c));
e(ns+find(Y_tar_pseudo==c)) = -1 / length(find(Y_tar_pseudo==c));
e(isinf(e)) = 0;
N = N + e*e';
end
end
M = M + N;
M = M / norm(M,'fro');
%% Centering matrix H
H = eye(n) - 1/n * ones(n,n);
%% Calculation
if strcmp(kernel_type,'primal')
[A,~] = eigs(X*M*X'+lambda*eye(m),X*H*X',dim,'SM');
Z = A'*X;
else
K = kernel_jda(kernel_type,X,[],gamma);
[A,~] = eigs(K*M*K'+lambda*eye(n),K*H*K',dim,'SM');
Z = A'*K;
end
end
% With Fast Computation of the RBF kernel matrix
% To speed up the computation, we exploit a decomposition of the Euclidean distance (norm)
%
% Inputs:
% ker: 'linear','rbf','sam'
% X: data matrix (features * samples)
% gamma: bandwidth of the RBF/SAM kernel
% Output:
% K: kernel matrix
%
% Gustavo Camps-Valls
% 2006(c)
% Jordi ([email protected]), 2007
% 2007-11: if/then -> switch, and fixed RBF kernel
% Modified by Mingsheng Long
% 2013(c)
% Mingsheng Long ([email protected]), 2013
function K = kernel_jda(ker,X,X2,gamma)
switch ker
case 'linear'
if isempty(X2)
K = X'*X;
else
K = X'*X2;
end
case 'rbf'
n1sq = sum(X.^2,1);
n1 = size(X,2);
if isempty(X2)
D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
else
n2sq = sum(X2.^2,1);
n2 = size(X2,2);
D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2;
end
K = exp(-gamma*D);
case 'sam'
if isempty(X2)
D = X'*X;
else
D = X'*X2;
end
K = exp(-gamma*acos(D).^2);
otherwise
error(['Unsupported kernel ' ker])
end
end