-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrs-tracking-and-depth.cpp
149 lines (124 loc) · 5.44 KB
/
rs-tracking-and-depth.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// License: Apache 2.0. See LICENSE file in root directory.
// Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved.
#include <librealsense2/rs.hpp> // Include RealSense Cross Platform API
#include "example.hpp" // Include short list of convenience functions for rendering
#include <algorithm> // std::min, std::max
#include <fstream> // std::ifstream
// Helper functions
void register_glfw_callbacks(window& app, glfw_state& app_state);
float detR(float H[16]) {
return H[0]*(H[5]*H[10]-H[9]*H[6]) - H[4]*(H[1]*H[10]-H[2]*H[9]) + H[8]*(H[1]*H[6]-H[5]*H[2]);
}
int main(int argc, char * argv[]) try
{
// Create a simple OpenGL window for rendering:
window app(1280, 720, "RealSense Tracking and Depth Example");
// Construct an object to manage view state
glfw_state app_state;
// register callbacks to allow manipulation of the pointcloud
register_glfw_callbacks(app, app_state);
// Declare pointcloud object, for calculating pointclouds and texture mappings
rs2::pointcloud pc;
// We want the points object to be persistent so we can display the last cloud when a frame drops
rs2::points points;
// store pose and timestamp
rs2::pose_frame pose_frame(nullptr);
std::vector<rs2_vector> trajectory;
rs2::context ctx; // Create librealsense context for managing devices
std::map<std::string, rs2::colorizer> colorizers; // Declare map from device serial number to colorizer (utility class to convert depth data RGB colorspace)
std::vector<rs2::pipeline> pipelines;
// Capture serial numbers before opening streaming
std::vector<std::string> serials;
for (auto&& dev : ctx.query_devices())
serials.push_back(dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER));
// Start a streaming pipe per each connected device
for (auto&& serial : serials)
{
rs2::pipeline pipe(ctx);
rs2::config cfg;
cfg.enable_device(serial);
pipe.start(cfg);
pipelines.emplace_back(pipe);
// Map from each device's serial number to a different colorizer
colorizers[serial] = rs2::colorizer();
}
// extrinsics
// depth w.r.t. tracking (column-major)
float H_t265_d400[16] = {1, 0, 0, 0,
0,-1, 0, 0,
0, 0,-1, 0,
0, 0, 0, 1};
std::string fn = "./H_t265_d400.cfg";
std::ifstream ifs(fn);
if (!ifs.is_open()) {
std::cerr << "Couldn't open " << fn << std::endl;
return -1;
}
else {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
ifs >> H_t265_d400[i+4*j]; // row-major to column-major
}
}
}
float det = detR(H_t265_d400);
if (fabs(1-det) > 1e-6) {
std::cerr << "Invalid homogeneous transformation matrix input (det != 1)" << std::endl;
return -1;
}
while (app) // Application still alive?
{
for (auto &&pipe : pipelines) // loop over pipelines
{
// Wait for the next set of frames from the camera
auto frames = pipe.wait_for_frames();
auto color = frames.get_color_frame();
// For cameras that don't have RGB sensor, we'll map the pointcloud to infrared instead of color
if (!color)
color = frames.get_infrared_frame();
// Tell pointcloud object to map to this color frame
if (color)
pc.map_to(color);
auto depth = frames.get_depth_frame();
// Generate the pointcloud and texture mappings
if (depth)
points = pc.calculate(depth);
// Upload the color frame to OpenGL
if (color)
app_state.tex.upload(color);
// pose
auto pose = frames.get_pose_frame();
if (pose) {
pose_frame = pose;
// Print the x, y, z values of the translation, relative to initial position
auto pose_data = pose.get_pose_data();
std::cout << "\r" << "Device Position: " << std::setprecision(3) << std::fixed << pose_data.translation.x << " " << pose_data.translation.y << " " << pose_data.translation.z << " (meters)";
// add new point in the trajectory (if motion large enough to reduce size of traj. vector)
if (trajectory.size() == 0)
trajectory.push_back(pose_data.translation);
else {
rs2_vector prev = trajectory.back();
rs2_vector curr = pose_data.translation;
if (sqrt(pow((curr.x - prev.x), 2) + pow((curr.y - prev.y), 2) + pow((curr.z - prev.z), 2)) > 0.002)
trajectory.push_back(pose_data.translation);
}
}
}
// Draw the pointcloud
if (points && pose_frame) {
rs2_pose pose = pose_frame.get_pose_data();
draw_pointcloud_wrt_world(app.width(), app.height(), app_state, points, pose, H_t265_d400, trajectory);
}
}
return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n " << e.what() << std::endl;
return EXIT_FAILURE;
}
catch (const std::exception & e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}