-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_nwpu45_plabel.py
executable file
·150 lines (140 loc) · 5.85 KB
/
make_nwpu45_plabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# from src import architectures,ramps
# import torch.backends.cudnn as cudnn
import csv
import os
import random
import time
import warnings
from datetime import datetime
from timeit import default_timer as timer
import numpy as np
import pandas as pd
import torch
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision import datasets
from tensorboardX import SummaryWriter
from torch import nn, optim
from torch.utils.data import DataLoader
from dataset import nwpu45
from config.NWPU45.config_NWPU45 import DefaultConfigs as config
from models import getnet
from utils import *
# from apex import amp
#1. set random.seed and cudnn performance
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
# torch.backends.cudnn.benchmark = True
warnings.filterwarnings('ignore')
obj=[
'airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach',
'bridge', 'chaparral', 'church', 'circular_farmland', 'cloud',
'commercial_area', 'dense_residential', 'desert', 'forest', 'freeway',
'golf_course', 'ground_track_field', 'harbor', 'industrial_area',
'intersection', 'island', 'lake', 'meadow', 'medium_residential',
'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot',
'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout',
'runway', 'sea_ice', 'ship', 'snowberg', 'sparse_residential', 'stadium',
'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station',
'wetland'
]
#3. test model on public dataset and save the probability matrix
def plabels(test_loader,model_1,model_2,percent):
top1 = AverageMeter(config)
top5 = AverageMeter(config)
matrix = runningScore(config=config)
matrix.reset()
times=0.0
timeall =0.0
precision1=0
precision5=0
#3.1 confirm the model converted to cuda
# progress bar
test_progressor = ProgressBar(mode="test",model_name=config.model_name, total=len(test_loader),weights=config.weights,Status=config.Status,current_time=config.time)
# 2.2 switch to evaluate mode and confirm model has been transfered to cuda
model_1.cuda()
model_2.cuda()
model_1.eval()
model_2.eval()
resultdir=os.path.join(config.dataroot,'Split/Semi/',str(percent))
if os.path.exists( resultdir ):
if os.path.exists(os.path.join(resultdir,'noise.txt')):
os.remove(os.path.join(resultdir,'noise.txt'))
else:
raise("error")
Discard_count=0
with torch.no_grad():
for i, sample in enumerate(test_loader):
test_progressor.current = i
image, target =sample['image'],sample['label']
input = image.cuda()
target = target.cuda()
#target = Variable(target).cuda()
# 2.2.1 compute output
torch.cuda.synchronize()
start = time.time()
output_1= model_1(input)
output_2=model_2(input)
_, predicted_1 = torch.max(output_1, 1)
_,predicted_2=torch.max(output_2,1)
torch.cuda.synchronize()
end = time.time()
times=end-start
timeall=timeall+times
# output=output.squeeze(2)
# output=output.squeeze(2)
if predicted_1 !=predicted_2:
Discard_count+=1
continue
else:
output=output_1
# 2.2.2 measure accuracy and record loss
precision1, precision5 = accuracy(output, target, topk=(1, 5))
matrix.update(output,target)
top1.update(precision1[0],input.size(0))
# top1.perclass(class_correct,class_total)
top5.update(precision5[0], input.size(0))
test_progressor.current_top1 = top1.avg
test_progressor.current_top5 = top5.avg
test_progressor()
_, predicted = torch.max(output, 1)
# img_PIL=Image.open(origin_path).convert('RGB')
# img_NP=np.array(img_PIL)
# img_Tensor=torch.Tensor(img_NP)
#img_Tensor=loader(img_PIL).unsqueeze(0)
tag=obj[predicted.item()]
right_label=obj[target.item()]
f=open(resultdir+'/noise.txt','a')
f.write(sample['origin'][0].split('/')[-1]+' '+str(predicted.item())+'\n')
f.close()
# img_path=resultdir+'/'+right_label+str(i)+'.png'
# shutil.copy(str(origin_path),img_path)
test_progressor.done()
print(f"we discard {Discard_count} labels")
#4. more details to build main function
def main():
#4.2 get model and optimizer
model_1 = getnet.net(config.model_name, config.num_classes,Dataset=config.dataset)
model_2 = getnet.net(config.model_name_2, config.num_classes,Dataset=config.dataset)
model_1.cuda()
model_2.cuda()
# model = amp.initialize(model, opt_level="O1") # 这里是“欧一”,不是“零一”
#4.5 get files and split for K-fold dataset
assert config.train_status=="Clean" and config.percent==0 and config.noise_type=="Semi"
percent=[1,2,3,4,5]
best_model = torch.load(os.path.join(config.weights,config.model_name,config.Status,config.time,'model_best.pth.tar'))
model_1.load_state_dict(best_model["state_dict"])
best_model_2=torch.load(os.path.join(config.weights,config.model_name_2,config.Status,config.time_2,'model_best.pth.tar'))
model_2.load_state_dict(best_model_2["state_dict"])
for p in percent:
time.sleep(1)
test_data_list = nwpu45.NWPU45_Semi(root=config.dataroot,split='plabel',percent=p)
test_dataloader = DataLoader(
test_data_list, batch_size=1, shuffle=True,num_workers=config.workers, pin_memory=True)
plabels(test_dataloader,model_1,model_2,p)
if __name__ =="__main__":
main()