-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_aid_noisy.py
executable file
·282 lines (258 loc) · 12.4 KB
/
main_aid_noisy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import multiprocessing
import os
# from apex import amp
import pickle
import random
import re
import time
import warnings
from datetime import datetime
import numpy as np
import pandas as pd
import torch
import torchvision
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
from torch import nn, optim
from torch.utils.data import DataLoader
import losses.SCELoss as SCELoss
from config.AID.config_AID import DefaultConfigs as config
from dataset import aid
from models import getnet
from utils import *
multiprocessing.set_start_method('spawn',True)
# import torch.backends.cudnn as cudnn
# 1. set random.seed and cudnn performance
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
# torch.backends.cudnn.benchmark = True
warnings.filterwarnings('ignore')
torch.cuda.empty_cache()
# 2. evaluate func
def evaluate(val_loader, model,criterion, epoch):
# 2.1 define meters
losses = AverageMeter(config=config)
top1 = AverageMeter(config=config)
top5 = AverageMeter(config=config)
# progress bar
val_progressor = ProgressBar(mode="Val ", epoch=epoch, total_epoch=config.epochs,
model_name=config.model_name, total=len(val_loader),weights=config.weights,Status=config.Status,current_time=config.time)
# 2.2 switch to evaluate mode and confirm model has been transfered to cuda
model.cuda()
model.eval()
# model.shake_config=(True,False,True)
with torch.no_grad():
for i, sample in enumerate(val_loader):
val_progressor.start_time=time.time()
# image, target = sample['image'], sample['label']
val_progressor.current = i
image, target =sample['image'],sample['label']
input2_size = image.size()
input2 = np.zeros(input2_size).astype(np.float32)
input2 = torch.from_numpy(input2).cuda()
input = image.cuda()
target = target.cuda()
# 2.2.1 compute output
_,output= model(input2,input)
loss = criterion(output, target)
# 2.2.2 measure accuracy and record loss
precision1, precision5 = accuracy(output, target, topk=(1, 5))
class_correct, class_total=perclass_precision(output, target,config)
losses.update(loss.item(), input.size(0))
top1.update(precision1[0], input.size(0))
top1.perclass(class_correct,class_total)
top5.update(precision5[0], input.size(0))
val_progressor.current_loss = losses.avg
val_progressor.current_top1 = top1.avg
val_progressor.current_top5 = top5.avg
val_progressor.end_time=time.time()
val_progressor()
val_progressor.done()
return [losses.avg, top1.avg, top5.avg,top1.perclass_avg]
def main():
# 4.1 tensorboard
current_time = time.strftime(
'%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
config.time=current_time
model = getnet.net(config.model_name, config.num_classes,Train=True,Dataset=config.dataset)
model.cuda()
# model=torch.nn.DataParallel(model)
# optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
criterion_clean = nn.CrossEntropyLoss().cuda()
criterion_noise = nn.CrossEntropyLoss().cuda()
# criterion_noise=SCELoss.SCELoss(alpha=0.1, beta=1, num_classes=config.num_classes)
# 4.3 some parameters for K-fold and restart model
start_epoch = 0
best_precision1 = 0
best_precision5 = 0
# best_precision_save = 0
loss_status=""
early_stopping = EarlyStopping(patience=config.patience, verbose=True,current_time=current_time,config=config)
# 4.4 restart the training process
if config.Finetune:
checkpoint = torch.load(os.path.join(config.weights,config.model_name,config.Status,config.time , 'model_best.pth.tar'))
start_epoch = checkpoint["epoch"]
current_time = checkpoint["current_time"]
best_precision1 = checkpoint["best_precision1"]
best_precision5 = checkpoint["best_precision5"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
loss_status=checkpoint["loss"]
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# mkdir
if not os.path.exists(config.weights):
os.makedirs(config.weights)
if not os.path.exists(os.path.join(config.weights,config.model_name,config.Status,current_time)):
os.makedirs(os.path.join(config.weights,config.model_name,config.Status,current_time))
logdir = os.path.join(config.weights, config.model_name, config.Status,current_time)
writer = SummaryWriter(logdir)
shutil.copyfile('./config/'+config.dataset+'/config_'+config.dataset+'.py', os.path.join(config.weights,config.model_name,config.Status ,str(current_time),'config.py'))
if config.noise_type=="None":
assert config.train_status=="Double" and config.percent==0
train_data_list=aid.AID_Clean(root=config.dataroot,split='train')
elif config.noise_type=="Asym" or config.noise_type=="Symm" or config.noise_type=="Semi":
assert config.train_status=="Double" and config.percent !=0
train_data_list=aid.AID_Noise_Train(root=config.dataroot,config=config)
else:
raise("unsupport noise_type or train_status")
val_data_list=aid.AID_Clean(root=config.dataroot,split='val')
train_dataloader = DataLoader(
train_data_list, batch_size=config.noisebatch_size, num_workers=config.workers,shuffle=True, pin_memory=True)
val_dataloader = DataLoader(
val_data_list, batch_size=config.batch_size, shuffle=True,num_workers=config.workers, pin_memory=True)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.9)
# scheduler=optim.lr_scheduler.CosineAnnealingLR(optimizer,5) #2
# scheduler=optim.lr_scheduler.MultiStepLR(optimizer,[40,80])
# scheduler=optim.lr_scheduler.ExponentialLR(optimizer,0.1 , last_epoch=-1)
# 4.5.5.1 define metrics
train_losses = AverageMeter(config=config)
train_clean_losses= AverageMeter(config=config)
train_clean_top1 = AverageMeter(config=config)
train_clean_top5 = AverageMeter(config=config)
train_noise_top1 = AverageMeter(config=config)
train_noise_top5 = AverageMeter(config=config)
valid_loss = [np.inf, 0, 0]
# model.train()
# 4.5.5 train
for epoch in range(start_epoch, config.epochs):
avg_loss=0
scheduler.step(epoch)
train_progressor = ProgressBar(mode="Train", epoch=epoch, total_epoch=config.epochs,
model_name=config.model_name, total=len(train_dataloader),weights=config.weights,Status=config.Status,current_time=current_time)
# cleaniter=ir(train_dataloader)
# train
#global ir
for ir, (sample) in enumerate(train_dataloader):
# 4.5.5 switch to continue train process
if len(sample)==3:
clean_image,clean_target,noise_image,noise_target=sample['image'],sample['label'],sample['image'],sample['label']
elif len(sample)==2:
clean_image,clean_target,noise_image,noise_target=sample[0]['image'],sample[0]['label'],sample[1]['image'],sample[1]['label']
train_progressor.start_time=time.time()
train_progressor.current = ir
global_iter = len(train_dataloader) * epoch + ir + 1
model.train()
# model.shake_config=(True, True, True)
clean_image = clean_image.cuda()
clean_target = clean_target.cuda()
noise_image = noise_image.cuda()
noise_target = noise_target.cuda()
h,g = model(noise_image,clean_image)
noise_loss = criterion_noise(h, noise_target)
clean_loss = criterion_clean(g, clean_target)
loss = 10*clean_loss+2*noise_loss
loss_status = "10*clean_loss+2*noise_loss"
precision1_noise_train, precision5_noise_train = accuracy(h, noise_target, topk=(1, 5))
precision1_clean_train, precision5_clean_train = accuracy(g, clean_target, topk=(1, 5))
train_losses.update(loss.item(), clean_image.size(0)+noise_image.size(0))
train_clean_losses.update(clean_loss.item(), clean_image.size(0))
class_correct, class_total=perclass_precision(g, clean_target,config)
train_clean_top1.perclass(class_correct,class_total)
train_clean_top1.update(precision1_clean_train[0], clean_image.size(0))
train_clean_top5.update(precision5_clean_train[0], clean_image.size(0))
train_noise_top1.update(precision1_noise_train[0], noise_image.size(0))
train_noise_top5.update(precision5_noise_train[0],noise_image.size(0))
train_progressor.current_loss = train_losses.avg
train_progressor.current_top1 = train_clean_top1.avg
train_progressor.current_top5 = train_clean_top5.avg
current_top1=train_progressor.current_top1
current_noise_top5 = train_noise_top5.avg
current_noise_top1 = train_noise_top1.avg
writer.add_scalar(
'train/clean_top5', train_progressor.current_top5, global_iter)
writer.add_scalar(
'train/clean_top1', train_progressor.current_top1, global_iter)
writer.add_scalar(
'train/noise_top5', current_noise_top5, global_iter)
writer.add_scalar(
'train/noise_top1', current_noise_top1, global_iter)
# backward
optimizer.zero_grad()
avg_loss+=loss.item()
loss.backward()
# with amp.scale_loss(loss, optimizer) as scaled_loss:
# scaled_loss.backward()
optimizer.step()
writer.add_scalar('train/total_loss_iter',
loss.item(), global_iter)
writer.add_scalar('train/total_clean_loss_iter',
clean_loss.item(), global_iter)
writer.add_scalar('train/total_noise_loss_iter',
noise_loss.item(), global_iter)
train_progressor.end_time=time.time()
train_progressor()
train_progressor.done()
writer.add_scalar('train/avg_loss_epochs',
avg_loss/len(train_dataloader), epoch)
#end = time.clock()
# evaluate
lr = get_learning_rate(optimizer)
writer.add_scalar('parameters/learning_rate',lr,epoch)
# evaluate every half epoch
valid_loss = evaluate(val_dataloader, model, criterion_clean,epoch)
writer.add_scalar('val/top1', valid_loss[1], epoch)
writer.add_scalar('val/top5', valid_loss[2], epoch)
is_best1 = valid_loss[1] > best_precision1
is_best5 = valid_loss[2] >best_precision5
best_precision1 = max(valid_loss[1], best_precision1)
best_precision5 = max(valid_loss[2], best_precision5)
perclass=valid_loss[3]
#Early
early_stopping(val_loss=valid_loss[0],state={
"epoch": epoch + 1,
"model_name": config.model_name,
"state_dict": model.state_dict(),
"best_precision1": best_precision1,
"best_precision5": best_precision5,
"perclass":perclass,
"optimizer": optimizer.state_dict(),
"current_time": current_time,
"valid_loss": valid_loss,
"loss": loss_status
}, is_best1=is_best1)
if early_stopping.early_stop:
print("Early stopping")
break
# try:
# best_precision_save = best_precision1.cpu().data.numpy()
# best_precision_save = best_precision5.cpu().data.numpy()
# except:
# pass
# save_checkpoint()
if __name__ == "__main__":
main()