Skip to content

Latest commit

 

History

History
206 lines (174 loc) · 4.67 KB

File metadata and controls

206 lines (174 loc) · 4.67 KB

中文文档

Description

You are given an integer array jobs, where jobs[i] is the amount of time it takes to complete the ith job.

There are k workers that you can assign jobs to. Each job should be assigned to exactly one worker. The working time of a worker is the sum of the time it takes to complete all jobs assigned to them. Your goal is to devise an optimal assignment such that the maximum working time of any worker is minimized.

Return the minimum possible maximum working time of any assignment.

 

Example 1:

Input: jobs = [3,2,3], k = 3
Output: 3
Explanation: By assigning each person one job, the maximum time is 3.

Example 2:

Input: jobs = [1,2,4,7,8], k = 2
Output: 11
Explanation: Assign the jobs the following way:
Worker 1: 1, 2, 8 (working time = 1 + 2 + 8 = 11)
Worker 2: 4, 7 (working time = 4 + 7 = 11)
The maximum working time is 11.

 

Constraints:

  • 1 <= k <= jobs.length <= 12
  • 1 <= jobs[i] <= 107

Solutions

Python3

class Solution:
    def minimumTimeRequired(self, jobs: List[int], k: int) -> int:
        def dfs(i):
            nonlocal ans
            if i == len(jobs):
                ans = min(ans, max(cnt))
                return
            for j in range(k):
                if cnt[j] + jobs[i] >= ans:
                    continue
                cnt[j] += jobs[i]
                dfs(i + 1)
                cnt[j] -= jobs[i]
                if cnt[j] == 0:
                    break

        cnt = [0] * k
        jobs.sort(reverse=True)
        ans = inf
        dfs(0)
        return ans

Java

class Solution {
    private int[] cnt;
    private int ans;
    private int[] jobs;
    private int k;

    public int minimumTimeRequired(int[] jobs, int k) {
        this.k = k;
        Arrays.sort(jobs);
        for (int i = 0, j = jobs.length - 1; i < j; ++i, --j) {
            int t = jobs[i];
            jobs[i] = jobs[j];
            jobs[j] = t;
        }
        this.jobs = jobs;
        cnt = new int[k];
        ans = 0x3f3f3f3f;
        dfs(0);
        return ans;
    }

    private void dfs(int i) {
        if (i == jobs.length) {
            int mx = 0;
            for (int v : cnt) {
                mx = Math.max(mx, v);
            }
            ans = Math.min(ans, mx);
            return;
        }
        for (int j = 0; j < k; ++j) {
            if (cnt[j] + jobs[i] >= ans) {
                continue;
            }
            cnt[j] += jobs[i];
            dfs(i + 1);
            cnt[j] -= jobs[i];
            if (cnt[j] == 0) {
                break;
            }
        }
    }
}

C++

class Solution {
public:
    int ans;

    int minimumTimeRequired(vector<int>& jobs, int k) {
        vector<int> cnt(k);
        ans = 0x3f3f3f3f;
        sort(jobs.begin(), jobs.end(), greater<int>());
        dfs(0, k, jobs, cnt);
        return ans;
    }

    void dfs(int i, int k, vector<int>& jobs, vector<int>& cnt) {
        if (i == jobs.size()) {
            ans = min(ans, *max_element(cnt.begin(), cnt.end()));
            return;
        }
        for (int j = 0; j < k; ++j)
        {
            if (cnt[j] + jobs[i] >= ans) continue;
            cnt[j] += jobs[i];
            dfs(i + 1, k, jobs, cnt);
            cnt[j] -= jobs[i];
            if (cnt[j] == 0) break;
        }
    }
};

Go

func minimumTimeRequired(jobs []int, k int) int {
	cnt := make([]int, k)
	ans := 0x3f3f3f3f
	sort.Slice(jobs, func(i, j int) bool {
		return jobs[i] > jobs[j]
	})
	var dfs func(int)
	dfs = func(i int) {
		if i == len(jobs) {
			mx := 0
			for _, v := range cnt {
				mx = max(mx, v)
			}
			ans = min(ans, mx)
			return
		}
		for j := 0; j < k; j++ {
			if cnt[j]+jobs[i] >= ans {
				continue
			}
			cnt[j] += jobs[i]
			dfs(i + 1)
			cnt[j] -= jobs[i]
			if cnt[j] == 0 {
				break
			}
		}
	}
	dfs(0)
	return ans
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...