Skip to content

Latest commit

 

History

History
443 lines (376 loc) · 10.6 KB

File metadata and controls

443 lines (376 loc) · 10.6 KB

English Version

题目描述

给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。

连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。

请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。

 

示例 1:

输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20
解释:

我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。

示例 2:

输入:points = [[3,12],[-2,5],[-4,1]]
输出:18

示例 3:

输入:points = [[0,0],[1,1],[1,0],[-1,1]]
输出:4

示例 4:

输入:points = [[-1000000,-1000000],[1000000,1000000]]
输出:4000000

示例 5:

输入:points = [[0,0]]
输出:0

 

提示:

  • 1 <= points.length <= 1000
  • -106 <= xi, yi <= 106
  • 所有点 (xi, yi) 两两不同。

解法

最小生成树问题。

设 n 表示点数,m 表示边数。

方法一:朴素 Prim 算法

时间复杂度 O(n²)。

方法二:Kruskal 算法

先将所有边按照长度由小到大进行排序,循环遍历每条边,逐个加入到图中,当所有点达到一个连通状态时,退出循环,返回此时的总费用即可。

时间复杂度 O(mlogm)。

Python3

朴素 Prim 算法:

class Solution:
    def minCostConnectPoints(self, points: List[List[int]]) -> int:
        INF = 0x3f3f3f3f
        n = len(points)
        g = [[0] * n for _ in range(n)]
        for i in range(n):
            for j in range(n):
                if i != j:
                    x1, y1 = points[i]
                    x2, y2 = points[j]
                    g[i][j] = abs(x1 - x2) + abs(y1 - y2)
        dist = [INF] * n
        vis = [False] * n
        ans = 0
        for i in range(n):
            t = -1
            for j in range(n):
                if not vis[j] and (t == -1 or dist[t] > dist[j]):
                    t = j
            if i:
                ans += dist[t]
            for j in range(n):
                dist[j] = min(dist[j], g[t][j])
            vis[t] = True
        return ans

Kruskal 算法:

class Solution:
    def minCostConnectPoints(self, points: List[List[int]]) -> int:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        g = []
        n = len(points)
        for i, (x1, y1) in enumerate(points):
            for j in range(i + 1, n):
                x2, y2 = points[j]
                g.append((abs(x1 - x2) + abs(y1 - y2), i, j))
        g.sort()
        p = list(range(n))
        ans = 0
        for cost, i, j in g:
            if find(i) == find(j):
                continue
            p[find(i)] = find(j)
            n -= 1
            ans += cost
            if n == 1:
                return ans
        return 0

Java

朴素 Prim 算法:

class Solution {
    private static final int INF = 0x3f3f3f3f;

    public int minCostConnectPoints(int[][] points) {
        int n = points.length;
        int[][] g = new int[n][n];
        int[] dist = new int[n];
        boolean[] vis = new boolean[n];
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i != j) {
                    int x1 = points[i][0], y1 = points[i][1];
                    int x2 = points[j][0], y2 = points[j][1];
                    g[i][j] = Math.abs(x1 - x2) + Math.abs(y1 - y2);
                }
            }
        }
        Arrays.fill(dist, INF);
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            if (i > 0) {
                ans += dist[t];
            }
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], g[t][j]);
            }
            vis[t] = true;
        }
        return ans;
    }
}

Kruskal 算法:

class Solution {
    private int[] p;

    public int minCostConnectPoints(int[][] points) {
        int n = points.length;
        List<int[]> g = new ArrayList<>();
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                g.add(new int[]{Math.abs(x1 - x2) + Math.abs(y1 - y2), i, j});
            }
        }
        g.sort(Comparator.comparingInt(a -> a[0]));
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        int ans = 0;
        for (int[] e : g) {
            int cost = e[0], i = e[1], j = e[2];
            if (find(i) == find(j)) {
                continue;
            }
            p[find(i)] = find(j);
            ans += cost;
            if (--n == 1) {
                return ans;
            }
        }
        return 0;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

朴素 Prim 算法:

class Solution {
public:
    const int inf = 0x3f3f3f3f;

    int minCostConnectPoints(vector<vector<int>>& points) {
        int n = points.size();
        vector<vector<int>> g(n, vector<int>(n));
        vector<int> dist(n, inf);
        vector<bool> vis(n);
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                if (i !=  j)
                {
                    int x1 = points[i][0], y1 = points[i][1];
                    int x2 = points[j][0], y2 = points[j][1];
                    g[i][j] = abs(x1 - x2) + abs(y1 - y2);
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < n; ++i)
        {
            int t = -1;
            for (int j = 0; j < n; ++j)
            {
                if (!vis[j] && (t == -1 || dist[t] > dist[j]))
                {
                    t = j;
                }
            }
            if (i) ans += dist[t];
            for (int j = 0; j < n; ++j) dist[j] = min(dist[j], g[t][j]);
            vis[t] = true;
        }
        return ans;
    }
};

Kruskal 算法:

class Solution {
public:
    vector<int> p;

    int minCostConnectPoints(vector<vector<int>>& points) {
        int n = points.size();
        vector<vector<int>> g;
        for (int i = 0; i < n; ++i)
        {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j)
            {
                int x2 = points[j][0], y2 = points[j][1];
                g.push_back({abs(x1 - x2) + abs(y1 - y2), i, j});
            }
        }
        sort(g.begin(), g.end());
        p.resize(n);
        for (int i = 0; i < n; ++i) p[i] = i;
        int ans = 0;
        for (auto& e : g)
        {
            int cost = e[0], i = e[1], j = e[2];
            if (find(i) == find(j)) continue;
            p[find(i)] = find(j);
            ans += cost;
            if (--n == 1) return ans;
        }
        return 0;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

朴素 Prim 算法:

func minCostConnectPoints(points [][]int) int {
	n := len(points)
	inf := 0x3f3f3f3f
	g := make([][]int, n)
	dist := make([]int, n)
	vis := make([]bool, n)
	for i, p1 := range points {
		dist[i] = inf
		g[i] = make([]int, n)
		for j, p2 := range points {
			if i != j {
				x1, y1 := p1[0], p1[1]
				x2, y2 := p2[0], p2[1]
				g[i][j] = abs(x1-x2) + abs(y1-y2)
			}
		}
	}
	ans := 0
	for i := 0; i < n; i++ {
		t := -1
		for j := 0; j < n; j++ {
			if !vis[j] && (t == -1 || dist[t] > dist[j]) {
				t = j
			}
		}
		if i > 0 {
			ans += dist[t]
		}
		for j := 0; j < n; j++ {
			dist[j] = min(dist[j], g[t][j])
		}
		vis[t] = true
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

Kruskal 算法:

func minCostConnectPoints(points [][]int) int {
	n := len(points)
	var g [][]int
	for i, p := range points {
		x1, y1 := p[0], p[1]
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			g = append(g, []int{abs(x1-x2) + abs(y1-y2), i, j})
		}
	}
	sort.Slice(g, func(i, j int) bool {
		return g[i][0] < g[j][0]
	})
	ans := 0
	p := make([]int, n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, e := range g {
		cost, i, j := e[0], e[1], e[2]
		if find(i) == find(j) {
			continue
		}
		p[find(i)] = find(j)
		ans += cost
		n--
		if n == 1 {
			return ans
		}
	}
	return 0
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

...