给你一个函数 f(x, y)
和一个目标结果 z
,函数公式未知,请你计算方程 f(x,y) == z
所有可能的正整数 数对 x
和 y
。满足条件的结果数对可以按任意顺序返回。
尽管函数的具体式子未知,但它是单调递增函数,也就是说:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
函数接口定义如下:
interface CustomFunction { public: // Returns some positive integer f(x, y) for two positive integers x and y based on a formula. int f(int x, int y); };
你的解决方案将按如下规则进行评判:
- 判题程序有一个由
CustomFunction
的9
种实现组成的列表,以及一种为特定的z
生成所有有效数对的答案的方法。 - 判题程序接受两个输入:
function_id
(决定使用哪种实现测试你的代码)以及目标结果z
。 - 判题程序将会调用你实现的
findSolution
并将你的结果与答案进行比较。 - 如果你的结果与答案相符,那么解决方案将被视作正确答案,即
Accepted
。
示例 1:
输入:function_id = 1, z = 5 输出:[[1,4],[2,3],[3,2],[4,1]] 解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y 以下 x 和 y 满足 f(x, y) 等于 5: x=1, y=4 -> f(1, 4) = 1 + 4 = 5 x=2, y=3 -> f(2, 3) = 2 + 3 = 5 x=3, y=2 -> f(3, 2) = 3 + 2 = 5 x=4, y=1 -> f(4, 1) = 4 + 1 = 5
示例 2:
输入:function_id = 2, z = 5 输出:[[1,5],[5,1]] 解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y 以下 x 和 y 满足 f(x, y) 等于 5: x=1, y=5 -> f(1, 5) = 1 * 5 = 5 x=5, y=1 -> f(5, 1) = 5 * 1 = 5
提示:
1 <= function_id <= 9
1 <= z <= 100
- 题目保证
f(x, y) == z
的解处于1 <= x, y <= 1000
的范围内。 - 在
1 <= x, y <= 1000
的前提下,题目保证f(x, y)
是一个 32 位有符号整数。
二分查找。
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]:
res = []
for x in range(1, 1001):
left, right = 1, 1000
while left < right:
mid = (left + right) >> 1
if customfunction.f(x, mid) >= z:
right = mid
else:
left = mid + 1
if customfunction.f(x, left) == z:
res.append([x, left])
return res
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* public int f(int x, int y);
* };
*/
class Solution {
public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {
List<List<Integer>> res = new ArrayList<>();
for (int i = 1; i <= 1000; ++i) {
int left = 1, right = 1000;
while (left < right) {
int mid = (left + right) >> 1;
if (customfunction.f(i, mid) >= z) {
right = mid;
} else {
left = mid + 1;
}
}
if (customfunction.f(i, left) == z) {
res.add(Arrays.asList(i, left));
}
}
return res;
}
}
/**
* // This is the CustomFunction's API interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* f(x: number, y: number): number {}
* }
*/
function findSolution(customfunction: CustomFunction, z: number): number[][] {
// 二分
let ans = [];
for (let i = 1; i <= 1000; i++) {
let left = 1,
right = 1000;
while (left < right) {
let mid = (left + right) >> 1;
if (customfunction.f(i, mid) >= z) {
right = mid;
} else {
left = mid + 1;
}
}
if (customfunction.f(i, left) == z) {
ans.push([i, left]);
}
}
return ans;
}
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* public:
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* int f(int x, int y);
* };
*/
class Solution {
public:
vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {
vector<vector<int>> res;
for (int i = 1; i <= 1000; ++i) {
int left = 1, right = 1000;
while (left < right) {
int mid = left + right >> 1;
if (customfunction.f(i, mid) >= z) {
right = mid;
} else {
left = mid + 1;
}
}
if (customfunction.f(i, left) == z) {
res.push_back({i, left});
}
}
return res;
}
};
/**
* This is the declaration of customFunction API.
* @param x int
* @param x int
* @return Returns f(x, y) for any given positive integers x and y.
* Note that f(x, y) is increasing with respect to both x and y.
* i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
*/
func findSolution(customFunction func(int, int) int, z int) [][]int {
res := [][]int{}
for i := 1; i <= 1000; i++ {
left, right := 1, 1000
for left < right {
mid := (left + right) >> 1
if customFunction(i, mid) >= z {
right = mid
} else {
left = mid + 1
}
}
if customFunction(i, left) == z {
res = append(res, []int{i, left})
}
}
return res
}