给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
方法一:动态规划
题目可以转换为 0-1
背包问题。
设整数数组总和为 s
,要使得数组分割成两个元素和相等的子数组,需要满足 s 能够被 2 整除。在此前提下,我们可以将问题抽象为: 从数组中选出若干个数,使得选出的元素之和为 s/2
。显然这是一个 0-1
背包问题。
定义 dp[i][j]
表示是否可以从前 i 个数中选出若干个数,使得所选元素之和为 j。
动态规划——0-1
背包朴素做法:
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
m, n = len(nums), s >> 1
dp = [[False] * (n + 1) for _ in range(m + 1)]
dp[0][0] = True
for i in range(1, m + 1):
for j in range(n + 1):
dp[i][j] = dp[i - 1][j]
if not dp[i][j] and nums[i - 1] <= j:
dp[i][j] = dp[i - 1][j - nums[i - 1]]
return dp[-1][-1]
动态规划——0-1
背包空间优化:
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
n = s >> 1
dp = [False] * (n + 1)
dp[0] = True
for v in nums:
for j in range(n, v - 1, -1):
dp[j] = dp[j] or dp[j - v]
return dp[-1]
DFS + 记忆化搜索:
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
target = s >> 1
@cache
def dfs(i, s):
nonlocal target
if s > target or i >= len(nums):
return False
if s == target:
return True
return dfs(i + 1, s) or dfs(i + 1, s + nums[i])
return dfs(0, 0)
class Solution {
public boolean canPartition(int[] nums) {
int s = 0;
for (int v : nums) {
s += v;
}
if (s % 2 != 0) {
return false;
}
int m = nums.length;
int n = s >> 1;
boolean[][] dp = new boolean[m + 1][n + 1];
dp[0][0] = true;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
dp[i][j] = dp[i - 1][j];
if (!dp[i][j] && nums[i - 1] <= j) {
dp[i][j] = dp[i - 1][j - nums[i - 1]];
}
}
}
return dp[m][n];
}
}
class Solution {
public boolean canPartition(int[] nums) {
int s = 0;
for (int v : nums) {
s += v;
}
if (s % 2 != 0) {
return false;
}
int n = s >> 1;
boolean[] dp = new boolean[n + 1];
dp[0] = true;
for (int v : nums) {
for (int j = n; j >= v; --j) {
dp[j] = dp[j] || dp[j - v];
}
}
return dp[n];
}
}
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % 2 != 0) return false;
int m = nums.size(), n = s >> 1;
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
dp[0][0] = true;
for (int i = 1; i <= m; ++i)
{
for (int j = 0; j <= n; ++j)
{
dp[i][j] = dp[i - 1][j];
if (!dp[i][j] && nums[i - 1] <= j) dp[i][j] = dp[i - 1][j - nums[i - 1]];
}
}
return dp[m][n];
}
};
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % 2 != 0) return false;
int n = s >> 1;
vector<bool> dp(n + 1);
dp[0] = true;
for (int& v : nums)
for (int j = n; j >= v; --j)
dp[j] = dp[j] || dp[j - v];
return dp[n];
}
};
func canPartition(nums []int) bool {
s := 0
for _, v := range nums {
s += v
}
if s%2 != 0 {
return false
}
m, n := len(nums), s>>1
dp := make([][]bool, m+1)
for i := range dp {
dp[i] = make([]bool, n+1)
}
dp[0][0] = true
for i := 1; i <= m; i++ {
for j := 0; j < n; j++ {
dp[i][j] = dp[i-1][j]
if !dp[i][j] && nums[i-1] <= j {
dp[i][j] = dp[i-1][j-nums[i-1]]
}
}
}
return dp[m][n]
}
func canPartition(nums []int) bool {
s := 0
for _, v := range nums {
s += v
}
if s%2 != 0 {
return false
}
n := s >> 1
dp := make([]bool, n+1)
dp[0] = true
for _, v := range nums {
for j := n; j >= v; j-- {
dp[j] = dp[j] || dp[j-v]
}
}
return dp[n]
}
/**
* @param {number[]} nums
* @return {boolean}
*/
var canPartition = function (nums) {
let s = 0;
for (let v of nums) {
s += v;
}
if (s % 2 != 0) {
return false;
}
const m = nums.length;
const n = s >> 1;
const dp = new Array(n + 1).fill(false);
dp[0] = true;
for (let i = 1; i <= m; ++i) {
for (let j = n; j >= nums[i - 1]; --j) {
dp[j] = dp[j] || dp[j - nums[i - 1]];
}
}
return dp[n];
};