给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins =[1, 2, 5]
, amount =11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins =[2]
, amount =3
输出:-1
示例 3:
输入:coins = [1], amount = 0 输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
方法一:动态规划
类似完全背包的思路,硬币数量不限,求凑成总金额所需的最少的硬币个数。
定义 dp[i][j]
表示从前 i 种硬币选出总金额为 j 所需的最少硬币数。
由于:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - v] + 1, dp[i - 1][j - 2v] + 2, ... , dp[i - 1][j - kv] + k)
dp[i][j - v] = min( dp[i - 1][j - v], dp[i - 1][j - 2v] + 1, ... , dp[i - 1][j - kv] + k - 1)
因此 dp[i][j] = min(dp[i - 1][j], dp[i][j - v] + 1)
。
时间复杂度:$O(m*amount)$,其中 m 表示 coins
长度。
动态规划——完全背包问题朴素做法:
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
m, n = len(coins), amount
dp = [[n + 1] * (n + 1) for _ in range(m + 1)]
dp[0][0] = 0
for i in range(1, m + 1):
for j in range(n + 1):
dp[i][j] = dp[i - 1][j]
if j >= coins[i - 1]:
dp[i][j] = min(dp[i][j], dp[i][j - coins[i - 1]] + 1)
return -1 if dp[-1][-1] > n else dp[-1][-1]
动态规划——完全背包问题空间优化:
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [amount + 1] * (amount + 1)
dp[0] = 0
for coin in coins:
for j in range(coin, amount + 1):
dp[j] = min(dp[j], dp[j - coin] + 1)
return -1 if dp[-1] > amount else dp[-1]
class Solution {
public int coinChange(int[] coins, int amount) {
int m = coins.length;
int[][] dp = new int[m + 1][amount + 1];
for (int i = 0; i <= m; ++i) {
Arrays.fill(dp[i], amount + 1);
}
dp[0][0] = 0;
for (int i = 1; i <= m; ++i) {
int v = coins[i - 1];
for (int j = 0; j <= amount; ++j) {
dp[i][j] = dp[i - 1][j];
if (j >= v) {
dp[i][j] = Math.min(dp[i][j], dp[i][j - v] + 1);
}
}
}
return dp[m][amount] > amount ? - 1 : dp[m][amount];
}
}
class Solution {
public int coinChange(int[] coins, int amount) {
int[] dp = new int[amount + 1];
Arrays.fill(dp, amount + 1);
dp[0] = 0;
for (int coin : coins) {
for (int j = coin; j <= amount; j++) {
dp[j] = Math.min(dp[j], dp[j - coin] + 1);
}
}
return dp[amount] > amount ? -1 : dp[amount];
}
}
/**
* @param {number[]} coins
* @param {number} amount
* @return {number}
*/
var coinChange = function (coins, amount) {
let dp = Array(amount + 1).fill(amount + 1);
dp[0] = 0;
for (const coin of coins) {
for (let j = coin; j <= amount; ++j) {
dp[j] = Math.min(dp[j], dp[j - coin] + 1);
}
}
return dp[amount] > amount ? -1 : dp[amount];
};
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount + 1, amount + 1);
dp[0] = 0;
for (auto& coin : coins)
for (int j = coin; j <= amount; ++j)
dp[j] = min(dp[j], dp[j - coin] + 1);
return dp[amount] > amount ? -1 : dp[amount];
}
};
func coinChange(coins []int, amount int) int {
dp := make([]int, amount+1)
for i := 1; i <= amount; i++ {
dp[i] = amount + 1
}
for _, coin := range coins {
for j := coin; j <= amount; j++ {
dp[j] = min(dp[j], dp[j-coin]+1)
}
}
if dp[amount] > amount {
return -1
}
return dp[amount]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
function coinChange(coins: number[], amount: number): number {
let dp = new Array(amount + 1).fill(amount + 1);
dp[0] = 0;
for (const coin of coins) {
for (let j = coin; j <= amount; ++j) {
dp[j] = Math.min(dp[j], dp[j - coin] + 1);
}
}
return dp[amount] > amount ? -1 : dp[amount];
}
impl Solution {
pub fn coin_change(coins: Vec<i32>, amount: i32) -> i32 {
let n = coins.len();
let amount = amount as usize;
let mut dp = vec![amount + 1; amount + 1];
dp[0] = 0;
for i in 1..=amount {
for j in 0..n {
let coin = coins[j] as usize;
if coin <= i {
dp[i] = dp[i].min(dp[i - coin] + 1);
}
}
}
if dp[amount] > amount {
-1
} else {
dp[amount] as i32
}
}
}