Skip to content

Latest commit

 

History

History
642 lines (523 loc) · 16.2 KB

File metadata and controls

642 lines (523 loc) · 16.2 KB

English Version

题目描述

给你一个二维矩阵 matrix ,你需要处理下面两种类型的若干次查询:

  1. 更新:更新 matrix 中某个单元的值。
  2. 求和:计算矩阵 matrix 中某一矩形区域元素的 ,该区域由 左上角 (row1, col1)右下角 (row2, col2) 界定。

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 用整数矩阵 matrix 初始化对象。
  • void update(int row, int col, int val) 更新 matrix[row][col] 的值到 val
  • int sumRegion(int row1, int col1, int row2, int col2) 返回矩阵 matrix 中指定矩形区域元素的 ,该区域由 左上角 (row1, col1)右下角 (row2, col2) 界定。

 

示例 1:

输入
["NumMatrix", "sumRegion", "update", "sumRegion"]
[[[[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]], [2, 1, 4, 3], [3, 2, 2], [2, 1, 4, 3]]
输出
[null, 8, null, 10]

解释 NumMatrix numMatrix = new NumMatrix([[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]); numMatrix.sumRegion(2, 1, 4, 3); // 返回 8 (即, 左侧红色矩形的和) numMatrix.update(3, 2, 2); // 矩阵从左图变为右图 numMatrix.sumRegion(2, 1, 4, 3); // 返回 10 (即,右侧红色矩形的和)

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • -105 <= matrix[i][j] <= 105
  • 0 <= row < m
  • 0 <= col < n
  • -105 <= val <= 105
  • 0 <= row1 <= row2 < m
  • 0 <= col1 <= col2 < n
  • 最多调用104 次 sumRegionupdate 方法

解法

方法一:树状数组

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 O(log n)

对于本题,可以构建二维树状数组。

方法二:线段树

线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 log(width)。更新某个元素的值,只需要更新 log(width) 个区间,并且这些区间都包含在一个包含该元素的大区间内。

  • 线段树的每个节点代表一个区间;
  • 线段树具有唯一的根节点,代表的区间是整个统计范围,如 [1, N]
  • 线段树的每个叶子节点代表一个长度为 1 的元区间 [x, x]
  • 对于每个内部节点 [l, r],它的左儿子是 [l, mid],右儿子是 [mid + 1, r], 其中 mid = ⌊(l + r) / 2⌋ (即向下取整)。

Python3

树状数组:

class BinaryIndexedTree:
    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)

    @staticmethod
    def lowbit(x):
        return x & -x

    def update(self, x, delta):
        while x <= self.n:
            self.c[x] += delta
            x += BinaryIndexedTree.lowbit(x)

    def query(self, x):
        s = 0
        while x > 0:
            s += self.c[x]
            x -= BinaryIndexedTree.lowbit(x)
        return s


class NumMatrix:

    def __init__(self, matrix: List[List[int]]):
        self.trees = []
        n = len(matrix[0])
        for row in matrix:
            tree = BinaryIndexedTree(n)
            for j, v in enumerate(row):
                tree.update(j + 1, v)
            self.trees.append(tree)

    def update(self, row: int, col: int, val: int) -> None:
        tree = self.trees[row]
        prev = tree.query(col + 1) - tree.query(col)
        tree.update(col + 1, val - prev)

    def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
        return sum(tree.query(col2 + 1) - tree.query(col1) for tree in self.trees[row1: row2 + 1])


# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# obj.update(row,col,val)
# param_2 = obj.sumRegion(row1,col1,row2,col2)

线段树:

class Node:
    def __init__(self):
        self.l = 0
        self.r = 0
        self.v = 0

class SegmentTree:
    def __init__(self, nums):
        n = len(nums)
        self.nums = nums
        self.tr = [Node() for _ in range(4 * n)]
        self.build(1, 1, n)

    def build(self, u, l, r):
        self.tr[u].l = l
        self.tr[u].r = r
        if l == r:
            self.tr[u].v = self.nums[l - 1]
            return
        mid = (l + r) >> 1
        self.build(u << 1, l, mid)
        self.build(u << 1 | 1, mid + 1, r)
        self.pushup(u)

    def modify(self, u, x, v):
        if self.tr[u].l == x and self.tr[u].r == x:
            self.tr[u].v = v
            return
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        if x <= mid:
            self.modify(u << 1, x, v)
        else:
            self.modify(u << 1 | 1, x, v)
        self.pushup(u)

    def query(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            return self.tr[u].v
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        v = 0
        if l <= mid:
            v += self.query(u << 1, l, r)
        if r > mid:
            v += self.query(u << 1 | 1, l, r)
        return v

    def pushup(self, u):
        self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v

class NumMatrix:

    def __init__(self, matrix: List[List[int]]):
        self.trees = [SegmentTree(row) for row in matrix]

    def update(self, row: int, col: int, val: int) -> None:
        tree = self.trees[row]
        tree.modify(1, col + 1, val)

    def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
        return sum(self.trees[row].query(1, col1 + 1, col2 + 1) for row in range(row1, row2 + 1))


# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# obj.update(row,col,val)
# param_2 = obj.sumRegion(row1,col1,row2,col2)

Java

树状数组:

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    public int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    public static int lowbit(int x) {
        return x & -x;
    }
}

class NumMatrix {
    private BinaryIndexedTree[] trees;

    public NumMatrix(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        trees = new BinaryIndexedTree[m];
        for (int i = 0; i < m; ++i) {
            BinaryIndexedTree tree = new BinaryIndexedTree(n);
            for (int j = 0; j < n; ++j) {
                tree.update(j + 1, matrix[i][j]);
            }
            trees[i] = tree;
        }
    }

    public void update(int row, int col, int val) {
        BinaryIndexedTree tree = trees[row];
        int prev = tree.query(col + 1) - tree.query(col);
        tree.update(col + 1, val - prev);
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        int s = 0;
        for (int i = row1; i <= row2; ++i) {
            BinaryIndexedTree tree = trees[i];
            s += tree.query(col2 + 1) - tree.query(col1);
        }
        return s;
    }
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * obj.update(row,col,val);
 * int param_2 = obj.sumRegion(row1,col1,row2,col2);
 */

线段树:

class Node {
    int l;
    int r;
    int v;
}

class SegmentTree {
    private Node[] tr;
    private int[] nums;

    public SegmentTree(int[] nums) {
        int n = nums.length;
        tr = new Node[n << 2];
        this.nums = nums;
        for (int i = 0; i < tr.length; ++i) {
            tr[i] = new Node();
        }
        build(1, 1, n);
    }

    public void build(int u, int l, int r) {
        tr[u].l = l;
        tr[u].r = r;
        if (l == r) {
            tr[u].v = nums[l - 1];
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }

    public void modify(int u, int x, int v) {
        if (tr[u].l == x && tr[u].r == x) {
            tr[u].v = v;
            return;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        if (x <= mid) {
            modify(u << 1, x, v);
        } else {
            modify(u << 1 | 1, x, v);
        }
        pushup(u);
    }

    public void pushup(int u) {
        tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v;
    }

    public int query(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) {
            return tr[u].v;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        int v = 0;
        if (l <= mid) {
            v += query(u << 1, l, r);
        }
        if (r > mid) {
            v += query(u << 1 | 1, l, r);
        }
        return v;
    }
}

class NumMatrix {
    private SegmentTree[] trees;

    public NumMatrix(int[][] matrix) {
        int m = matrix.length;
        trees = new SegmentTree[m];
        for (int i = 0; i < m; ++i) {
            trees[i] = new SegmentTree(matrix[i]);
        }
    }

    public void update(int row, int col, int val) {
        SegmentTree tree = trees[row];
        tree.modify(1, col + 1, val);
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        int s = 0;
        for (int row = row1; row <= row2; ++row) {
            SegmentTree tree = trees[row];
            s += tree.query(1, col1 + 1, col2 + 1);
        }
        return s;
    }
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * obj.update(row,col,val);
 * int param_2 = obj.sumRegion(row1,col1,row2,col2);
 */

C++

树状数组:

class BinaryIndexedTree {
public:
    int n;
    vector<int> c;

    BinaryIndexedTree(int _n): n(_n), c(_n + 1){}

    void update(int x, int delta) {
        while (x <= n)
        {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    int query(int x) {
        int s = 0;
        while (x > 0)
        {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    int lowbit(int x) {
        return x & -x;
    }
};

class NumMatrix {
public:
    vector<BinaryIndexedTree*> trees;

    NumMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size();
        int n = matrix[0].size();
        trees.resize(m);
        for (int i = 0; i < m; ++i) {
            BinaryIndexedTree* tree = new BinaryIndexedTree(n);
            for (int j = 0; j < n; ++j) tree->update(j + 1, matrix[i][j]);
            trees[i] = tree;
        }
    }

    void update(int row, int col, int val) {
        BinaryIndexedTree* tree = trees[row];
        int prev = tree->query(col + 1) - tree->query(col);
        tree->update(col + 1, val - prev);
    }

    int sumRegion(int row1, int col1, int row2, int col2) {
        int s = 0;
        for (int i = row1; i <= row2; ++i)
        {
            BinaryIndexedTree* tree = trees[i];
            s += tree->query(col2 + 1) - tree->query(col1);
        }
        return s;
    }
};

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix* obj = new NumMatrix(matrix);
 * obj->update(row,col,val);
 * int param_2 = obj->sumRegion(row1,col1,row2,col2);
 */

线段树:

class Node {
public:
    int l;
    int r;
    int v;
};

class SegmentTree {
public:
    vector<Node*> tr;
    vector<int> nums;

    SegmentTree(vector<int>& nums) {
        int n = nums.size();
        tr.resize(n << 2);
        this->nums = nums;
        for (int i = 0; i < tr.size(); ++i) tr[i] = new Node();
        build(1, 1, n);
    }

    void build(int u, int l, int r) {
        tr[u]->l = l;
        tr[u]->r = r;
        if (l == r)
        {
            tr[u]->v = nums[l - 1];
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }

    void modify(int u, int x, int v) {
        if (tr[u]->l == x && tr[u]->r == x)
        {
            tr[u]->v = v;
            return;
        }
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        if (x <= mid) modify(u << 1, x, v);
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }

    int query(int u, int l, int r) {
        if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v;
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        int v = 0;
        if (l <= mid) v += query(u << 1, l, r);
        if (r > mid) v += query(u << 1 | 1, l, r);
        return v;
    }

    void pushup(int u) {
        tr[u]->v = tr[u << 1]->v + tr[u << 1 | 1]->v;
    }
};

class NumMatrix {
public:
    vector<SegmentTree*> trees;

    NumMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size();
        trees.resize(m);
        for (int i = 0; i < m; ++i) trees[i] = new SegmentTree(matrix[i]);
    }

    void update(int row, int col, int val) {
        SegmentTree* tree = trees[row];
        tree->modify(1, col + 1, val);
    }

    int sumRegion(int row1, int col1, int row2, int col2) {
        int s = 0;
        for (int row = row1; row <= row2; ++row) s += trees[row]->query(1, col1 + 1, col2 + 1);
        return s;
    }
};

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix* obj = new NumMatrix(matrix);
 * obj->update(row,col,val);
 * int param_2 = obj->sumRegion(row1,col1,row2,col2);
 */

Go

树状数组:

type BinaryIndexedTree struct {
	n int
	c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
	c := make([]int, n+1)
	return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
	return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
	for x <= this.n {
		this.c[x] += delta
		x += this.lowbit(x)
	}
}

func (this *BinaryIndexedTree) query(x int) int {
	s := 0
	for x > 0 {
		s += this.c[x]
		x -= this.lowbit(x)
	}
	return s
}

type NumMatrix struct {
	trees []*BinaryIndexedTree
}

func Constructor(matrix [][]int) NumMatrix {
	n := len(matrix[0])
	var trees []*BinaryIndexedTree
	for _, row := range matrix {
		tree := newBinaryIndexedTree(n)
		for j, v := range row {
			tree.update(j+1, v)
		}
		trees = append(trees, tree)
	}
	return NumMatrix{trees}
}

func (this *NumMatrix) Update(row int, col int, val int) {
	tree := this.trees[row]
	prev := tree.query(col+1) - tree.query(col)
	tree.update(col+1, val-prev)
}

func (this *NumMatrix) SumRegion(row1 int, col1 int, row2 int, col2 int) int {
	s := 0
	for i := row1; i <= row2; i++ {
		tree := this.trees[i]
		s += tree.query(col2+1) - tree.query(col1)
	}
	return s
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * obj := Constructor(matrix);
 * obj.Update(row,col,val);
 * param_2 := obj.SumRegion(row1,col1,row2,col2);
 */

...