给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
进阶:
- 你能将算法的时间复杂度降低到
O(n log(n))
吗?
方法一:动态规划
定义 dp[i]
为以 nums[i]
结尾的最长子序列的长度,dp[i]
初始化为 1(i∈[0, n)
)。即题目求的是 dp[i]
(i ∈[0, n-1]
)的最大值。
状态转移方程为:dp[i] = max(dp[j]) + 1
,其中 0≤j<i
且 nums[j] < nums[i]
。
时间复杂度:$O(n^{2})$。
方法二:贪心 + 二分查找
维护一个数组 d[i]
,表示长度为 i 的最长上升子序列末尾元素的最小值,初始值 d[1] = nums[0]
。
直观上,d[i]
是单调递增数组。
证明:假设存在 d[j] ≥ d[i]
,且 j < i
,我们考虑从长度为 i 的最长上升子序列的末尾删除 i - j
个元素,那么这个序列长度变为 j,且第 j 个元素 d[j]
必然小于 d[i]
,由于前面假设 d[j] ≥ d[i]
,产生了矛盾,因此数组 d 是单调递增数组。
算法思路:
设当前求出的最长上升子序列的长度为 size,初始 size = 1
,从前往后遍历数组 nums,在遍历到 nums[i]
时:
- 若
nums[i] > d[size]
,则直接将nums[i]
加入到数组 d 的末尾,并且更新 size 自增; - 否则,在数组 d 中二分查找(前面证明 d 是一个单调递增数组),找到第一个大于等于 nums[i] 的位置 idx,更新
d[idx] = nums[i]
。
最终返回 size。
时间复杂度:$O(nlogn)$。
方法三:树状数组
树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:
- 单点更新
update(x, delta)
: 把序列 x 位置的数加上一个值 delta; - 前缀和查询
query(x)
:查询序列[1,...x]
区间的区间和,即位置 x 的前缀和。
这两个操作的时间复杂度均为 O(log n)
。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。
本题我们使用树状数组 tree[x]
来维护以 x 结尾的最长上升子序列的长度。
时间复杂度:$O(nlogn)$。
def update(x, val):
while x <= n:
c[x] = max(c[x], val)
x += lowbit(x)
def query(x):
s = 0
while x > 0:
s = max(s, c[x])
x -= lowbit(x)
return s
动态规划:
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
dp = [1] * n
for i in range(1, n):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
贪心 + 二分查找:
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
d = [nums[0]]
for x in nums[1:]:
if x > d[-1]:
d.append(x)
else:
idx = bisect_left(d, x)
if idx == len(d):
idx = 0
d[idx] = x
return len(d)
树状数组:
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, val):
while x <= self.n:
self.c[x] = max(self.c[x], val)
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x:
s = max(s, self.c[x])
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
s = sorted(set(nums))
m = {v: i for i, v in enumerate(s, 1)}
tree = BinaryIndexedTree(len(m))
ans = 1
for v in nums:
x = m[v]
t = tree.query(x - 1) + 1
ans = max(ans, t)
tree.update(x, t)
return ans
动态规划:
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
int res = 1;
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
res = Math.max(res, dp[i]);
}
return res;
}
}
贪心 + 二分查找:
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] d = new int[n + 1];
d[1] = nums[0];
int size = 1;
for (int i = 1; i < n; ++i) {
if (nums[i] > d[size]) {
d[++size] = nums[i];
} else {
int left = 1, right = size;
while (left < right) {
int mid = (left + right) >> 1;
if (d[mid] >= nums[i]) {
right = mid;
} else {
left = mid + 1;
}
}
int p = d[left] >= nums[i] ? left : 1;
d[p] = nums[i];
}
}
return size;
}
}
树状数组:
class Solution {
public int lengthOfLIS(int[] nums) {
TreeSet<Integer> ts = new TreeSet();
for (int v : nums) {
ts.add(v);
}
int idx = 1;
Map<Integer, Integer> m = new HashMap<>();
for (int v : ts) {
m.put(v, idx++);
}
BinaryIndexedTree tree = new BinaryIndexedTree(m.size());
int ans = 1;
for (int v : nums) {
int x = m.get(v);
int t = tree.query(x - 1) + 1;
ans = Math.max(ans, t);
tree.update(x, t);
}
return ans;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int val) {
while (x <= n) {
c[x] = Math.max(c[x], val);
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s = Math.max(s, c[x]);
x -= lowbit(x);
}
return s;
}
public static int lowbit(int x) {
return x & -x;
}
}
动态规划:
function lengthOfLIS(nums: number[]): number {
let n = nums.length;
let dp = new Array(n).fill(1);
for (let i = 0; i < n; i++) {
for (let j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
return Math.max(...dp);
}
贪心 + 二分查找:
function lengthOfLIS(nums: number[]): number {
const n = nums.length;
let d = new Array(n + 1);
d[1] = nums[0];
let size = 1;
for (let i = 1; i < n; ++i) {
if (nums[i] > d[size]) {
d[++size] = nums[i];
} else {
let left = 1,
right = size;
while (left < right) {
const mid = (left + right) >> 1;
if (d[mid] >= nums[i]) {
right = mid;
} else {
left = mid + 1;
}
}
const p = d[left] >= nums[i] ? left : 1;
d[p] = nums[i];
}
}
return size;
}
动态规划:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, 1);
for (int i = 1; i < n; ++i)
{
for (int j = 0; j < i; ++j)
{
if (nums[j] < nums[i]) dp[i] = max(dp[i], dp[j] + 1);
}
}
return *max_element(dp.begin(), dp.end());
}
};
贪心 + 二分查找:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> d{nums[0]};
for (int i = 1; i < n; ++i)
{
if (nums[i] > d[d.size() - 1]) d.push_back(nums[i]);
else
{
int idx = lower_bound(d.begin(), d.end(), nums[i]) - d.begin();
if (idx == d.size()) idx = 0;
d[idx] = nums[i];
}
}
return d.size();
}
};
树状数组:
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n): n(_n), c(_n + 1){}
void update(int x, int val) {
while (x <= n)
{
c[x] = max(c[x], val);
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0)
{
s = max(s, c[x]);
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
set<int> s(nums.begin(), nums.end());
int idx = 1;
unordered_map<int, int> m;
for (int v : s) m[v] = idx++;
BinaryIndexedTree* tree = new BinaryIndexedTree(m.size());
int ans = 1;
for (int v : nums)
{
int x = m[v];
int t = tree->query(x - 1) + 1;
ans = max(ans, t);
tree->update(x, t);
}
return ans;
}
};
动态规划:
func lengthOfLIS(nums []int) int {
n := len(nums)
dp := make([]int, n)
dp[0] = 1
res := 1
for i := 1; i < n; i++ {
dp[i] = 1
for j := 0; j < i; j++ {
if nums[j] < nums[i] {
dp[i] = max(dp[i], dp[j]+1)
}
}
res = max(res, dp[i])
}
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
贪心 + 二分查找:
func lengthOfLIS(nums []int) int {
d := make([]int, len(nums)+1)
d[1] = nums[0]
size := 1
for _, x := range nums[1:] {
if x > d[size] {
size++
d[size] = x
} else {
left, right := 1, size
for left < right {
mid := (left + right) >> 1
if d[mid] >= x {
right = mid
} else {
left = mid + 1
}
}
if d[left] < x {
left = 1
}
d[left] = x
}
}
return size
}
树状数组:
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, val int) {
for x <= this.n {
if this.c[x] < val {
this.c[x] = val
}
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
if s < this.c[x] {
s = this.c[x]
}
x -= this.lowbit(x)
}
return s
}
func lengthOfLIS(nums []int) int {
s := make(map[int]bool)
for _, v := range nums {
s[v] = true
}
var t []int
for v, _ := range s {
t = append(t, v)
}
sort.Ints(t)
m := make(map[int]int)
for i, v := range t {
m[v] = i + 1
}
ans := 1
tree := newBinaryIndexedTree(len(m))
for _, v := range nums {
x := m[v]
t := tree.query(x-1) + 1
if ans < t {
ans = t
}
tree.update(x, t)
}
return ans
}
impl Solution {
pub fn length_of_lis(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut dp = vec![1; n];
for i in 1..n {
for j in 0..i {
if nums[i] > nums[j] {
dp[i] = dp[i].max(dp[j] + 1);
}
}
}
*dp.iter().max().unwrap()
}
}