输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的循环双向链表。要求不能创建任何新的节点,只能调整树中节点指针的指向。
为了让您更好地理解问题,以下面的二叉搜索树为例:
我们希望将这个二叉搜索树转化为双向循环链表。链表中的每个节点都有一个前驱和后继指针。对于双向循环链表,第一个节点的前驱是最后一个节点,最后一个节点的后继是第一个节点。
下图展示了上面的二叉搜索树转化成的链表。“head” 表示指向链表中有最小元素的节点。
特别地,我们希望可以就地完成转换操作。当转化完成以后,树中节点的左指针需要指向前驱,树中节点的右指针需要指向后继。还需要返回链表中的第一个节点的指针。
注意:本题与主站 426 题相同:https://leetcode.cn/problems/convert-binary-search-tree-to-sorted-doubly-linked-list/
注意:此题对比原题有改动。
- 排序链表:二叉搜索树中序遍历得到有序序列
- 循环链表:头节点指向链表尾节点,尾节点指向链表头节点
- 双向链表:
pre.right = cur
、cur.left = pre
、pre = cur
"""
# Definition for a Node.
class Node:
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
"""
class Solution:
def treeToDoublyList(self, root: 'Node') -> 'Node':
def dfs(cur):
if cur is None:
return
dfs(cur.left)
if self.pre is None:
self.head = cur
else:
self.pre.right = cur
cur.left = self.pre
self.pre = cur
dfs(cur.right)
if root is None:
return None
self.head = self.pre = None
dfs(root)
self.head.left = self.pre
self.pre.right = self.head
return self.head
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val,Node _left,Node _right) {
val = _val;
left = _left;
right = _right;
}
};
*/
class Solution {
Node head;
Node pre;
public Node treeToDoublyList(Node root) {
if (root == null) return null;
dfs(root);
head.left = pre;
pre.right = head;
return head;
}
private void dfs(Node cur) {
if (cur == null) return;
dfs(cur.left);
if (pre == null) head = cur;
else pre.right = cur;
cur.left = pre;
pre = cur;
dfs(cur.right);
}
}
/**
* // Definition for a Node.
* function Node(val,left,right) {
* this.val = val;
* this.left = left;
* this.right = right;
* };
*/
/**
* @param {Node} root
* @return {Node}
*/
var treeToDoublyList = function (root) {
function dfs(cur) {
if (!cur) return;
dfs(cur.left);
if (!pre) head = cur;
else pre.right = cur;
cur.left = pre;
pre = cur;
dfs(cur.right);
}
if (!root) return null;
let head, pre;
dfs(root);
head.left = pre;
pre.right = head;
return head;
};
class Solution {
public:
Node* treeToDoublyList(Node* root) {
if (root == NULL) return NULL;
inorder(root);
head->left = pre;
pre->right = head;
return head;
}
private:
Node *pre, *head;
void inorder(Node* cur) {
if (cur) {
inorder(cur->left);
if (pre)
pre->right = cur;
else
head = cur;
cur->left = pre;
pre = cur;
inorder(cur->right);
}
}
};
/*
// Definition for a Node.
public class Node {
public int val;
public Node left;
public Node right;
public Node() {}
public Node(int _val) {
val = _val;
left = null;
right = null;
}
public Node(int _val,Node _left,Node _right) {
val = _val;
left = _left;
right = _right;
}
}
*/
public class Solution {
Node head, pre;
public Node TreeToDoublyList(Node root) {
if (root == null) {
return null;
}
dfs(root);
head.left = pre;
pre.right = head;
return head;
}
public void dfs(Node cur) {
if (cur == null) {
return;
}
dfs(cur.left);
if (pre == null) {
head = cur;
} else {
pre.right = cur;
}
cur.left = pre;
pre = cur;
dfs(cur.right);
}
}