Skip to content

Latest commit

 

History

History
170 lines (134 loc) · 2.77 KB

File metadata and controls

170 lines (134 loc) · 2.77 KB

题目描述

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

 

示例 1:

输入:n = 2
输出:1

示例 2:

输入:n = 5
输出:5

 

提示:

  • 0 <= n <= 100

解法

递推求解。

Python3

class Solution:
    def fib(self, n: int) -> int:
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return a % 1000000007

Java

class Solution {
    public int fib(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = (a + b) % 1000000007;
            a = b;
            b = c;
        }
        return a;
    }
}

C++

class Solution {
public:
    int fib(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = (a + b) % 1000000007;
            a = b;
            b = c;
        }
        return a;
    }
};

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var fib = function (n) {
    let a = 0,
        b = 1;
    for (let i = 0; i < n; ++i) {
        const c = (a + b) % (1e9 + 7);
        a = b;
        b = c;
    }
    return a;
};

Go

func fib(n int) int {
	a, b := 0, 1
	for i := 0; i < n; i++ {
		a, b = b, (a+b)%1000000007
	}
	return a
}

TypeScript

function fib(n: number): number {
    let a: number = 0,
        b: number = 1;
    for (let i: number = 0; i < n; i++) {
        let c: number = (a + b) % 1000000007;
        [a, b] = [b, c];
    }
    return a;
}

Rust

impl Solution {
    pub fn fib(n: i32) -> i32 {
        let mut tup = (0, 1);
        for _ in 0..n {
            tup = (tup.1, (tup.0 + tup.1) % 1000000007);
        }
        return tup.0;
    }
}

C#

public class Solution {
    public int Fib(int n) {
        int a = 0, b = 1, tmp;
        for (int i = 0; i < n; i++) {
            tmp = a;
            a = b;
            b = (tmp + b) % 1000000007;
        }
        return a % 1000000007;
    }
}

...