魔术索引。 在数组A[0...n-1]
中,有所谓的魔术索引,满足条件A[i] = i
。给定一个有序整数数组,编写一种方法找出魔术索引,若有的话,在数组A中找出一个魔术索引,如果没有,则返回-1。若有多个魔术索引,返回索引值最小的一个。
示例1:
输入:nums = [0, 2, 3, 4, 5] 输出:0 说明: 0下标的元素为0
示例2:
输入:nums = [1, 1, 1] 输出:1
提示:
- nums长度在[1, 1000000]之间
线性查找:
遍历数组,当 A[i] = i
时直接返回即可。
优化:
在遍历的基础,进行可能的 "跳跃",结束时执行 i = max(A[i], i + 1)
,而不再单纯 i++
。
可行性证明:
因为数组是有序的,若 A[i] != i
,那么就可以将 A[i]
以下的可能全部排除,直接将 i
设定为 A[i]
。
若是考虑最糟的状况(所有元素都为负数),则该优化与遍历无差别。
class Solution:
def findMagicIndex(self, nums: List[int]) -> int:
def find(nums, left, right):
if left > right:
return -1
mid = (left + right) >> 1
left_index = find(nums, left, mid - 1)
if left_index != -1:
return left_index
if nums[mid] == mid:
return mid
return find(nums, mid + 1, right)
return find(nums, 0, len(nums) - 1)
class Solution {
public int findMagicIndex(int[] nums) {
int left = 0, right = nums.length - 1;
return find(nums, left, right);
}
private int find(int[] nums, int left, int right) {
if (left > right) {
return -1;
}
int mid = (left + right) >> 1;
int leftIndex = find(nums, left, mid - 1);
if (leftIndex != -1) {
return leftIndex;
}
if (nums[mid] == mid) {
return mid;
}
return find(nums, mid + 1, right);
}
}
/**
* @param {number[]} nums
* @return {number}
*/
var findMagicIndex = function (nums) {
return helper(nums, 0, nums.length - 1);
};
function helper(nums, left, right) {
if (left > right) return -1;
let mid = Math.floor((left + right) / 2);
let leftIndex = helper(nums, left, mid - 1);
if (leftIndex != -1) return leftIndex;
if (nums[mid] == mid) return mid;
return helper(nums, mid + 1, right);
}
class Solution {
public:
int findMagicIndex(vector<int>& nums) {
return find(nums, 0, nums.size() - 1);
}
int find(vector<int>& nums, int left, int right) {
if (left > right) {
return -1;
}
int mid = left + right >> 1;
int leftIndex = find(nums, left, mid - 1);
if (leftIndex != -1) {
return leftIndex;
}
if (nums[mid] == mid) {
return mid;
}
return find(nums, mid + 1, right);
}
};
func findMagicIndex(nums []int) int {
return find(nums, 0, len(nums)-1)
}
func find(nums []int, left, right int) int {
if left > right {
return -1
}
mid := (left + right) >> 1
leftIndex := find(nums, left, mid-1)
if leftIndex != -1 {
return leftIndex
}
if nums[mid] == mid {
return mid
}
return find(nums, mid+1, right)
}
function findMagicIndex(nums: number[]): number {
const n = nums.length;
const find = (l: number, r: number): number => {
if (l > r || nums[r] < 0) {
return -1;
}
const mid = l + Math.floor((r - l) / 2);
if (nums[mid] >= l) {
const res = find(l, mid - 1);
if (res !== -1) {
return res;
}
}
if (nums[mid] === mid) {
return mid;
}
return find(mid + 1, r);
};
return find(0, n - 1);
}
function findMagicIndex(nums: number[]): number {
const n = nums.length;
let i = 0;
while (i < n) {
if (nums[i] === i) {
return i;
}
i = Math.max(nums[i], i + 1);
}
return -1;
}
impl Solution {
fn find(nums: &Vec<i32>, l: usize, r: usize) -> i32 {
if l >= r || nums[r - 1] < 0 {
return -1;
}
let mid = l + (r - l) / 2;
if nums[mid] >= l as i32 {
let res = Self::find(nums, l, mid);
if res != -1 {
return res;
}
}
if nums[mid] == mid as i32 {
return mid as i32;
}
Self::find(nums, mid + 1, r)
}
pub fn find_magic_index(nums: Vec<i32>) -> i32 {
Self::find(&nums, 0, nums.len())
}
}
impl Solution {
pub fn find_magic_index(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut i = 0 as i32;
while (i as usize) < n {
let num = nums[i as usize];
if num == i {
return i;
}
i = num.max(i + 1);
}
-1
}
}