一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级台阶。求该青蛙跳上一个 n
级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
提示:
0 <= n <= 100
青蛙想上第 n
级台阶,可从第 n-1
级台阶跳一级上去,也可从第 n-2
级台阶跳两级上去,即:f(n) = f(n-1) + f(n-2)
。递推求解即可。
class Solution:
def numWays(self, n: int) -> int:
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return b % 1000000007
class Solution {
public int numWays(int n) {
int a = 0, b = 1;
for (int i = 0; i < n; ++i) {
int c = (a + b) % 1000000007;
a = b;
b = c;
}
return b;
}
}
class Solution {
public:
int numWays(int n) {
int a = 0, b = 1;
for (int i = 0; i < n; ++i) {
int c = (a + b) % 1000000007;
a = b;
b = c;
}
return b;
}
};
/**
* @param {number} n
* @return {number}
*/
var numWays = function (n) {
let a = 0,
b = 1;
for (let i = 0; i < n; ++i) {
const c = (a + b) % (1e9 + 7);
a = b;
b = c;
}
return b;
};
func numWays(n int) int {
a, b := 0, 1
for i := 0; i < n; i++ {
a, b = b, (a + b) % 1000000007
}
return b
}
function numWays(n: number): number {
let a = 0;
let b = 1;
for (let i = 0; i < n; i++) {
[a, b] = [b, (a + b) % 1000000007];
}
return b;
}
impl Solution {
pub fn num_ways(n: i32) -> i32 {
let mut tup = (0, 1);
for _ in 0..n {
tup = (tup.1, (tup.0 + tup.1) % 1000000007);
}
tup.1
}
}