forked from PatrickZH/DeepCore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
319 lines (279 loc) · 17.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import torch.nn as nn
import argparse
import deepcore.nets as nets
import deepcore.datasets as datasets
import deepcore.methods as methods
from torchvision import transforms
from utils import *
from datetime import datetime
from time import sleep
def main():
parser = argparse.ArgumentParser(description='Parameter Processing')
# Basic arguments
parser.add_argument('--dataset', type=str, default='CIFAR10', help='dataset')
parser.add_argument('--model', type=str, default='ResNet18', help='model')
parser.add_argument('--selection', type=str, default="uniform", help="selection method")
parser.add_argument('--num_exp', type=int, default=5, help='the number of experiments')
parser.add_argument('--num_eval', type=int, default=10, help='the number of evaluating randomly initialized models')
parser.add_argument('--epochs', default=200, type=int, help='number of total epochs to run')
parser.add_argument('--data_path', type=str, default='data', help='dataset path')
parser.add_argument('--gpu', default=None, nargs="+", type=int, help='GPU id to use')
parser.add_argument('--print_freq', '-p', default=20, type=int, help='print frequency (default: 20)')
parser.add_argument('--fraction', default=0.1, type=float, help='fraction of data to be selected (default: 0.1)')
parser.add_argument('--seed', default=int(time.time() * 1000) % 100000, type=int, help="random seed")
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument("--cross", type=str, nargs="+", default=None, help="models for cross-architecture experiments")
# Optimizer and scheduler
parser.add_argument('--optimizer', default="SGD", help='optimizer to use, e.g. SGD, Adam')
parser.add_argument('--lr', type=float, default=0.1, help='learning rate for updating network parameters')
parser.add_argument('--min_lr', type=float, default=1e-4, help='minimum learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('-wd', '--weight_decay', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)',
dest='weight_decay')
parser.add_argument("--nesterov", default=True, type=str_to_bool, help="if set nesterov")
parser.add_argument("--scheduler", default="CosineAnnealingLR", type=str, help=
"Learning rate scheduler")
parser.add_argument("--gamma", type=float, default=.5, help="Gamma value for StepLR")
parser.add_argument("--step_size", type=float, default=50, help="Step size for StepLR")
# Training
parser.add_argument('--batch', '--batch-size', "-b", default=256, type=int, metavar='N',
help='mini-batch size (default: 256)')
parser.add_argument("--train_batch", "-tb", default=None, type=int,
help="batch size for training, if not specified, it will equal to batch size in argument --batch")
parser.add_argument("--selection_batch", "-sb", default=None, type=int,
help="batch size for selection, if not specified, it will equal to batch size in argument --batch")
# Testing
parser.add_argument("--test_interval", '-ti', default=1, type=int, help=
"the number of training epochs to be preformed between two test epochs; a value of 0 means no test will be run (default: 1)")
parser.add_argument("--test_fraction", '-tf', type=float, default=1.,
help="proportion of test dataset used for evaluating the model (default: 1.)")
# Selecting
parser.add_argument("--selection_epochs", "-se", default=40, type=int,
help="number of epochs whiling performing selection on full dataset")
parser.add_argument('--selection_momentum', '-sm', default=0.9, type=float, metavar='M',
help='momentum whiling performing selection (default: 0.9)')
parser.add_argument('--selection_weight_decay', '-swd', default=5e-4, type=float,
metavar='W', help='weight decay whiling performing selection (default: 5e-4)',
dest='selection_weight_decay')
parser.add_argument('--selection_optimizer', "-so", default="SGD",
help='optimizer to use whiling performing selection, e.g. SGD, Adam')
parser.add_argument("--selection_nesterov", "-sn", default=True, type=str_to_bool,
help="if set nesterov whiling performing selection")
parser.add_argument('--selection_lr', '-slr', type=float, default=0.1, help='learning rate for selection')
parser.add_argument("--selection_test_interval", '-sti', default=1, type=int, help=
"the number of training epochs to be preformed between two test epochs during selection (default: 1)")
parser.add_argument("--selection_test_fraction", '-stf', type=float, default=1.,
help="proportion of test dataset used for evaluating the model while preforming selection (default: 1.)")
parser.add_argument('--balance', default=True, type=str_to_bool,
help="whether balance selection is performed per class")
# Algorithm
parser.add_argument('--submodular', default="GraphCut", help="specifiy submodular function to use")
parser.add_argument('--submodular_greedy', default="LazyGreedy", help="specifiy greedy algorithm for submodular optimization")
parser.add_argument('--uncertainty', default="Entropy", help="specifiy uncertanty score to use")
# Checkpoint and resumption
parser.add_argument('--save_path', "-sp", type=str, default='', help='path to save results (default: do not save)')
parser.add_argument('--resume', '-r', type=str, default='', help="path to latest checkpoint (default: do not load)")
args = parser.parse_args()
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
if args.train_batch is None:
args.train_batch = args.batch
if args.selection_batch is None:
args.selection_batch = args.batch
if args.save_path != "" and not os.path.exists(args.save_path):
os.mkdir(args.save_path)
if not os.path.exists(args.data_path):
os.mkdir(args.data_path)
if args.resume != "":
# Load checkpoint
try:
print("=> Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location=args.device)
assert {"exp", "epoch", "state_dict", "opt_dict", "best_acc1", "rec", "subset", "sel_args"} <= set(
checkpoint.keys())
assert 'indices' in checkpoint["subset"].keys()
start_exp = checkpoint['exp']
start_epoch = checkpoint["epoch"]
except AssertionError:
try:
assert {"exp", "subset", "sel_args"} <= set(checkpoint.keys())
assert 'indices' in checkpoint["subset"].keys()
print("=> The checkpoint only contains the subset, training will start from the begining")
start_exp = checkpoint['exp']
start_epoch = 0
except AssertionError:
print("=> Failed to load the checkpoint, an empty one will be created")
checkpoint = {}
start_exp = 0
start_epoch = 0
else:
checkpoint = {}
start_exp = 0
start_epoch = 0
for exp in range(start_exp, args.num_exp):
if args.save_path != "":
checkpoint_name = "{dst}_{net}_{mtd}_exp{exp}_epoch{epc}_{dat}_{fr}_".format(dst=args.dataset,
net=args.model,
mtd=args.selection,
dat=datetime.now(),
exp=start_exp,
epc=args.epochs,
fr=args.fraction)
print('\n================== Exp %d ==================\n' % exp)
print("dataset: ", args.dataset, ", model: ", args.model, ", selection: ", args.selection, ", num_ex: ",
args.num_exp, ", epochs: ", args.epochs, ", fraction: ", args.fraction, ", seed: ", args.seed,
", lr: ", args.lr, ", save_path: ", args.save_path, ", resume: ", args.resume, ", device: ", args.device,
", checkpoint_name: " + checkpoint_name if args.save_path != "" else "", "\n", sep="")
channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test = datasets.__dict__[args.dataset] \
(args.data_path)
args.channel, args.im_size, args.num_classes, args.class_names = channel, im_size, num_classes, class_names
torch.random.manual_seed(args.seed)
if "subset" in checkpoint.keys():
subset = checkpoint['subset']
selection_args = checkpoint["sel_args"]
else:
selection_args = dict(epochs=args.selection_epochs,
selection_method=args.uncertainty,
balance=args.balance,
greedy=args.submodular_greedy,
function=args.submodular
)
method = methods.__dict__[args.selection](dst_train, args, args.fraction, args.seed, **selection_args)
subset = method.select()
print(len(subset["indices"]))
# Augmentation
if args.dataset == "CIFAR10" or args.dataset == "CIFAR100":
dst_train.transform = transforms.Compose(
[transforms.RandomCrop(args.im_size, padding=4, padding_mode="reflect"),
transforms.RandomHorizontalFlip(), dst_train.transform])
elif args.dataset == "ImageNet":
dst_train.transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
# Handle weighted subset
if_weighted = "weights" in subset.keys()
if if_weighted:
dst_subset = WeightedSubset(dst_train, subset["indices"], subset["weights"])
else:
dst_subset = torch.utils.data.Subset(dst_train, subset["indices"])
# BackgroundGenerator for ImageNet to speed up dataloaders
if args.dataset == "ImageNet":
train_loader = DataLoaderX(dst_subset, batch_size=args.train_batch, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = DataLoaderX(dst_test, batch_size=args.train_batch, shuffle=False,
num_workers=args.workers, pin_memory=True)
else:
train_loader = torch.utils.data.DataLoader(dst_subset, batch_size=args.train_batch, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(dst_test, batch_size=args.train_batch, shuffle=False,
num_workers=args.workers, pin_memory=True)
# Listing cross-architecture experiment settings if specified.
models = [args.model]
if isinstance(args.cross, list):
for model in args.cross:
if model != args.model:
models.append(model)
for model in models:
if len(models) > 1:
print("| Training on model %s" % model)
network = nets.__dict__[model](channel, num_classes, im_size).to(args.device)
if args.device == "cpu":
print("Using CPU.")
elif args.gpu is not None:
torch.cuda.set_device(args.gpu[0])
network = nets.nets_utils.MyDataParallel(network, device_ids=args.gpu)
elif torch.cuda.device_count() > 1:
network = nets.nets_utils.MyDataParallel(network).cuda()
if "state_dict" in checkpoint.keys():
# Loading model state_dict
network.load_state_dict(checkpoint["state_dict"])
criterion = nn.CrossEntropyLoss(reduction='none').to(args.device)
# Optimizer
if args.optimizer == "SGD":
optimizer = torch.optim.SGD(network.parameters(), args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
elif args.optimizer == "Adam":
optimizer = torch.optim.Adam(network.parameters(), args.lr, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.__dict__[args.optimizer](network.parameters(), args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
# LR scheduler
if args.scheduler == "CosineAnnealingLR":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * args.epochs,
eta_min=args.min_lr)
elif args.scheduler == "StepLR":
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=len(train_loader) * args.step_size,
gamma=args.gamma)
else:
scheduler = torch.optim.lr_scheduler.__dict__[args.scheduler](optimizer)
scheduler.last_epoch = (start_epoch - 1) * len(train_loader)
if "opt_dict" in checkpoint.keys():
optimizer.load_state_dict(checkpoint["opt_dict"])
# Log recorder
if "rec" in checkpoint.keys():
rec = checkpoint["rec"]
else:
rec = init_recorder()
best_prec1 = checkpoint["best_acc1"] if "best_acc1" in checkpoint.keys() else 0.0
# Save the checkpont with only the susbet.
if args.save_path != "" and args.resume == "":
save_checkpoint({"exp": exp,
"subset": subset,
"sel_args": selection_args},
os.path.join(args.save_path, checkpoint_name + ("" if model == args.model else model
+ "_") + "unknown.ckpt"), 0, 0.)
for epoch in range(start_epoch, args.epochs):
# train for one epoch
train(train_loader, network, criterion, optimizer, scheduler, epoch, args, rec, if_weighted=if_weighted)
# evaluate on validation set
if args.test_interval > 0 and (epoch + 1) % args.test_interval == 0:
prec1 = test(test_loader, network, criterion, epoch, args, rec)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
if is_best:
best_prec1 = prec1
if args.save_path != "":
rec = record_ckpt(rec, epoch)
save_checkpoint({"exp": exp,
"epoch": epoch + 1,
"state_dict": network.state_dict(),
"opt_dict": optimizer.state_dict(),
"best_acc1": best_prec1,
"rec": rec,
"subset": subset,
"sel_args": selection_args},
os.path.join(args.save_path, checkpoint_name + (
"" if model == args.model else model + "_") + "unknown.ckpt"),
epoch=epoch, prec=best_prec1)
# Prepare for the next checkpoint
if args.save_path != "":
try:
os.rename(
os.path.join(args.save_path, checkpoint_name + ("" if model == args.model else model + "_") +
"unknown.ckpt"), os.path.join(args.save_path, checkpoint_name +
("" if model == args.model else model + "_") + "%f.ckpt" % best_prec1))
except:
save_checkpoint({"exp": exp,
"epoch": args.epochs,
"state_dict": network.state_dict(),
"opt_dict": optimizer.state_dict(),
"best_acc1": best_prec1,
"rec": rec,
"subset": subset,
"sel_args": selection_args},
os.path.join(args.save_path, checkpoint_name +
("" if model == args.model else model + "_") + "%f.ckpt" % best_prec1),
epoch=args.epochs - 1,
prec=best_prec1)
print('| Best accuracy: ', best_prec1, ", on model " + model if len(models) > 1 else "", end="\n\n")
start_epoch = 0
checkpoint = {}
sleep(2)
if __name__ == '__main__':
main()