forked from jahanxb/flcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_fed_master_n10-mongodb.py
533 lines (385 loc) · 19.3 KB
/
main_fed_master_n10-mongodb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
from asyncore import read
import copy
from fileinput import filename
import sys
import threading
from collections import OrderedDict
import grpc
import numpy as np
import time, math
import torch
from utils.data_utils import data_setup, DatasetSplit
from utils.model_utils import *
from utils.aggregation import *
from options import call_parser
from models.Update import LocalUpdate
from models.test import test_img
from torch.utils.data import DataLoader
from concurrent import futures
# from utils.rdp_accountant import compute_rdp, get_privacy_spent
import warnings
import glob
import statistics
warnings.filterwarnings("ignore")
torch.cuda.is_available()
from kafka import KafkaProducer, KafkaConsumer
from multiprocessing import Pool, Process, ProcessError, Queue
import pika
from celery import Celery
import pickle,json
from queues_func_list import Node0RabbitQueues as rq0
from queues_func_list import Node1RabbitQueues as rq1
from pymongo import MongoClient
from Pyfhel import Pyfhel, PyPtxt, PyCtxt
from cryptography.fernet import Fernet
import asyncio
import os,paramiko,datetime
from declared_nodes import client_nodes_addr
mongodb_url = 'mongodb://jahanxb:[email protected]:27017/?authMechanism=DEFAULT&authSource=flmongo&tls=false'
async def waiting_exception_to_interupt():
print("Waiting...")
await asyncio.sleep(5)
print('....Wait Completed..Raising Exception')
raise KeyboardInterrupt
async def raise_me():
task = asyncio.create_task(waiting_exception_to_interupt())
await task
#asyncio.run(raise_me())
node0 = 0
node1 = 1
def arrange_round_train(args):
pass
def global_model_aggregate():
pass
def ack_agent():
pass
def something_something():
pass
nodes = 11 # 10 nodes (11 for loop)
local_updates = []
loss_locals = []
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
time.sleep(body.count(b'.'))
print(" [x] Done")
ch.basic_ack(delivery_tag=method.delivery_tag)
def send_global_round(node_addr,model_path):
localpath = model_path
remotepath = model_path
print('Connecting via ssh...')
ssh = paramiko.SSHClient()
ssh.load_host_keys(os.path.expanduser(os.path.join("~", ".ssh", "known_hosts")))
ssh.connect(node_addr, username='jahanxb')
sftp = ssh.open_sftp()
print('sftp opened...')
sftp.put(localpath, remotepath)
sftp.close()
print('sftp closed.. Model Sent!... ssh connection closing soon..')
ssh.close()
def serve(args):
torch.manual_seed(args.seed+args.repeat)
torch.cuda.manual_seed(args.seed+args.repeat)
np.random.seed(args.seed+args.repeat)
args, dataset_train, dataset_test, dict_users = data_setup(args)
print("{:<50}".format("=" * 15 + " data setup " + "=" * 50)[0:60])
print('length of dataset:{}'.format(len(dataset_train) + len(dataset_test)))
print('num. of training data:{}'.format(len(dataset_train)))
print('num. of testing data:{}'.format(len(dataset_test)))
print('num. of classes:{}'.format(args.num_classes))
print('num. of users:{}'.format(len(dict_users)))
sample_per_users = int(sum([ len(dict_users[i]) for i in range(len(dict_users))])/len(dict_users))
sample_per_users = 25000
print('num. of samples per user:{}'.format(sample_per_users))
if args.dataset == 'fmnist' or args.dataset == 'cifar':
dataset_test, val_set = torch.utils.data.random_split(
dataset_test, [9000, 1000])
print(len(dataset_test), len(val_set))
elif args.dataset == 'svhn':
dataset_test, val_set = torch.utils.data.random_split(
dataset_test, [len(dataset_test)-2000, 2000])
print(len(dataset_test), len(val_set))
print("{:<50}".format("=" * 15 + " log path " + "=" * 50)[0:60])
log_path = set_log_path(args)
print(log_path)
args, net_glob = model_setup(args)
print("{:<50}".format("=" * 15 + " model setup " + "=" * 50)[0:60])
# ###################################### model initialization ###########################
print("{:<50}".format("=" * 15 + " training... " + "=" * 50)[0:60])
t1 = time.time()
net_glob.train()
# copy weights
global_model = copy.deepcopy(net_glob.state_dict())
local_m = []
train_local_loss = []
test_acc = []
norm_med = []
loss_locals = []
local_updates = []
delta_norms = []
nodes = 11
node_index = 1
num_selected_users = 2
#mconn = MongoClient('mongodb+srv://jahanxb:[email protected]/?retryWrites=true&w=majority')
mconn = MongoClient(mongodb_url)
mdb = mconn['iteration_status']
try:
mdb.create_collection('master_global')
except Exception as e:
print(e)
pass
try:
mdb.create_collection('master_global')
except Exception as e:
print(e)
pass
for t in range(args.round):
seconds_to_match = 0
loss_locals = []
local_updates = []
delta_norms = []
m = max(int(args.frac * args.num_users), 1)
args.local_lr = args.local_lr * args.decay_weight
selected_idxs = list(np.random.choice(range(args.num_users), m, replace=False))
print(selected_idxs)
num_selected_users = len(selected_idxs)
print("num_selected_users: ",num_selected_users)
###########
## global model keys check###
#############
# print('#########global model keys#############')
# for k in global_model.keys():
# print(k)
########## Implementing Encryption #############
#HE = Pyfhel(context_params={'scheme':'bfv', 'n':2**14, 't_bits':32})
#HE = Pyfhel()
# HE = Pyfhel(key_gen=True, context_params={
# 'scheme': 'CKKS',
# 'n': 2**14, # For CKKS, n/2 values can be encoded in a single ciphertext.
# 'scale': 2**30, # Each multiplication grows the final scale
# 'qi_sizes': [60]+ [30]*8 +[60] # Number of bits of each prime in the chain.
# # Intermediate prime sizes should be close to log2(scale).
# # One per multiplication! More/higher qi_sizes means bigger
# # ciphertexts and slower ops.
# })
# HE.relinKeyGen()
# HE.keyGen()
# HE.rotateKeyGen()
# HE.relinKeyGen()
#################################################
for nodeid in range(node_index,nodes):
if t==0:
print('Initial Global Model...')
print('Queue Preparation for Global Model')
master_global_for_round = f'master_global_for_node[{nodeid}]_round[{t}]'
msg = pickle.dumps(global_model)
######## Encryption Step 1 - encrypt data #####################
# numpyArray = np.array(list(global_model.get('conv1.weight')))
# c = HE.encrypt(numpyArray)
# p = HE.encode(master_global_for_round)
# print("1. Creating serializable objects")
# print(f" Pyfhel object HE: {HE}")
# print(f" PyCtxt c=HE.encrypt([42]): {c}")
# print(f" PyPtxt p=HE.encode([-1]): {p}")
# con_size, con_size_zstd = HE.sizeof_context(), HE.sizeof_context(compr_mode="zstd")
# pk_size, pk_size_zstd = HE.sizeof_public_key(), HE.sizeof_public_key(compr_mode="zstd")
# sk_size, sk_size_zstd = HE.sizeof_secret_key(), HE.sizeof_secret_key(compr_mode="zstd")
# rotk_size,rotk_size_zstd = HE.sizeof_rotate_key(), HE.sizeof_rotate_key(compr_mode="zstd")
# rlk_size, rlk_size_zstd = HE.sizeof_relin_key(), HE.sizeof_relin_key(compr_mode="zstd")
# c_size, c_size_zstd = c.sizeof_ciphertext(), c.sizeof_ciphertext(compr_mode="zstd")
# # alternatively, for ciphertext sizes you can use sys.getsizeof(c)
# print("2. Checking size of serializable objects (with and without compression)")
# print(f" - context: [ \"zstd\" --> {con_size_zstd} | No compression --> {con_size}]")
# print(f" - public_key: [ \"zstd\" --> {pk_size_zstd} | No compression --> {pk_size}]")
# print(f" - secret_key: [ \"zstd\" --> {sk_size_zstd} | No compression --> {sk_size}]")
# print(f" - relin_key: [ \"zstd\" --> {rotk_size_zstd} | No compression --> {rotk_size}]")
# print(f" - rotate_key: [ \"zstd\" --> {rlk_size_zstd} | No compression --> {rlk_size}]")
# print(f" - c: [ \"zstd\" --> {c_size_zstd} | No compression --> {c_size}]")
####################################################################
######## Encryption Step 2 - Save encrypt data #####################
encrypt_key_path = f'/mydata/flcode/models/node_encrypted/global_models/{master_global_for_round}'
#os.system(f'cd /mydata/flcode/models/node_encrypted/global_models/{master_global_for_round}')
key = Fernet.generate_key()
fernet = Fernet(key=key)
encmsg = fernet.encrypt(msg)
print("key: ",key)
#print('encmsg: ',encmsg)
# #tmp_dir = tempfile.TemporaryDirectory()
# tmp_dir_name = encrypt_key_path
# # Now we save all objects into files
# HE.save_context(tmp_dir_name + "/context")
# HE.save_public_key(tmp_dir_name + "/pub.key")
# HE.save_secret_key(tmp_dir_name + "/sec.key")
# HE.save_relin_key(tmp_dir_name + "/relin.key")
# HE.save_rotate_key(tmp_dir_name + "/rotate.key")
# c.save(tmp_dir_name + "/c.ctxt")
# p.save(tmp_dir_name + "/p.ptxt")
# print("2a. Saving everything into files. Let's check the temporary dir:")
# print("\n\t".join(os.listdir(tmp_dir_name)))
###################################################################
torch.save(msg,f"/mydata/flcode/models/nodes_sftp/global_models/{master_global_for_round}.pkl")
model_path = f"/mydata/flcode/models/nodes_sftp/global_models/{master_global_for_round}.pkl"
# send model to nodes from here
print("mongodb_client_cluster.get() =",client_nodes_addr.get(nodeid))
#send_global_round(client_nodes_addr.get(nodeid),model_path)
mdb_msg = {'task_id':master_global_for_round,'state-ready':True,'consumed':False,
"conv1.weight":"",
"conv1.bias":"",
"conv2.weight":"",
"conv2.bias":"",
"conv3.weight":"",
"conv3.bias":"",
"fc1.weight":"",
"fc1.bias":"",
"fc2.weight":"",
"fc2.bias":"",
"fc3.weight":"",
"fc3.bias":"",
"data":encmsg,
"key":key
}
mdb.master_global.insert_one(mdb_msg)
else:
pass
print(" [x] Sent Round=",t)
print(f'Round Process Started... Current Round on Master t={t}')
for n in range(node_index,nodes):
'''LOCAL ROUND CHECK'''
while True:
task_id = f'node[{n}]_local_round[{t}]'
try:
time.sleep(5)
seconds_to_match = seconds_to_match + 5
t1 = t1 + 5
status = mdb.mongodb_client_cluster.find_one({'task_id':task_id})
if status.get('state-ready') == True:
print('status: ',200,' For :',status.get('task_id'))
local_model_key = status.get('key')
local_model = status.get('data')
break
else:
pass
except Exception as e:
print(f'@ [{task_id}] | MongoDB Exception Thrown :',e)
'''LOCAL LOSS ROUND CHECK '''
while True:
task_id = f'node[{n}]_local_loss_round[{t}]'
try:
time.sleep(5)
seconds_to_match = seconds_to_match + 5
t1 = t1 + 5
status = mdb.mongodb_client_cluster.find_one({'task_id':task_id})
if status.get('state-ready') == True:
print('status: ',200,' For :',status.get('task_id'))
local_model_loss_key = status.get('key')
local_model_loss = status.get('data')
break
else:
pass
except Exception as e:
print(f'@ [{task_id}] | MongoDB Exception Thrown :',e)
############################################################################################
print('################## TrainingTest onum_selected_usersn aggregated Model ######################')
#lp = torch.load(f'/mydata/flcode/models/nodes_sftp/nodes_local/node[{n}]_local_round[{t}].pkl')
fernet = Fernet(local_model_key)
lp = fernet.decrypt(local_model)
lp = list(pickle.loads(lp))
local_updates.append(lp)
#lp_loss = torch.load(f'/mydata/flcode/models/nodes_sftp/nodes_local_loss/node[{n}]_local_loss_round[{t}].pkl')
fernet = Fernet(local_model_loss_key)
lp_loss = fernet.decrypt(local_model_loss)
lp_loss = list(pickle.loads(lp_loss))
loss_locals.append(lp_loss[0])
print("num_selected_users: ",num_selected_users)
for i in range(num_selected_users):
print("i=",i)
global_model = {
k: global_model[k] + local_updates[i][0][k] / num_selected_users
for k in global_model.keys()
}
print("global_model: ",global_model.get('fc3.bias'))
net_glob.load_state_dict(global_model)
net_glob.eval()
test_acc_, _ = test_img(net_glob, dataset_test, args)
test_acc.append(test_acc_)
train_local_loss.append(sum(loss_locals) / len(loss_locals))
print('t {:3d}: '.format(t, ))
print('t {:3d}: train_loss = {:.3f}, test_acc = {:.3f}'.
format(t, train_local_loss[-1], test_acc[-1]))
print('Submitting new global model: .....')
# send model to nodes from here
for nn in range(node_index,nodes):
master_global_for_round = f'master_global_for_node[{nn}]_round[{t+1}]'
msg = pickle.dumps(global_model)
torch.save(msg,f"/mydata/flcode/models/nodes_sftp/global_models/{master_global_for_round}.pkl")
model_path = f"/mydata/flcode/models/nodes_sftp/global_models/{master_global_for_round}.pkl"
key = Fernet.generate_key()
fernet = Fernet(key=key)
encmsg = fernet.encrypt(msg)
print("key: ",key)
#send_global_round(client_nodes_addr.get(nn),model_path)
mdb_msg = {'task_id':master_global_for_round,'state-ready':True,'consumed':False,
"conv1.weight":"",
"conv1.bias":"",
"conv2.weight":"",
"conv2.bias":"",
"conv3.weight":"",
"conv3.bias":"",
"fc1.weight":"",
"fc1.bias":"",
"fc2.weight":"",
"fc2.bias":"",
"fc3.weight":"",
"fc3.bias":"",
"data":encmsg,
"key":key
}
mdb.master_global.insert_one(mdb_msg)
print(" [x] Node=", nn," Sent Round=",t+1)
t2 = time.time()
#dbs_time = datetime.timedelta(seconds=seconds_to_match)
dbs_time = t2 - t1
#dbs_time = dbs_time - seconds_to_match
hours, rem = divmod(dbs_time, 3600)
minutes, seconds = divmod(rem, 60)
# print("dbs_time: ",dbs_time)
# dhours, drem = divmod(dbs_time, 3600)
# dminutes, dseconds = divmod(rem, 60)
# print("dbs time: {:0>2}:{:0>2}:{:05.2f}".format(int(dhours), int(dminutes), dseconds))
print("training time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds))
time_taken = "training time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)
result = '\n'+ time_taken+' \n '+'t {:3d}: train_loss = {:.3f}, test_acc = {:.3f}'.format(t, train_local_loss[-1], test_acc[-1]) + '\n'
with open('/mydata/flcode/10nodes-results-log.txt', 'a') as the_file:
the_file.write(result)
the_file.close()
def aggregation_avg(global_model, local_updates):
'''
simple average
'''
# model_update = {k: local_updates[0][k] *0.0 for k in local_updates[0].keys()}
# for i in range(len(local_updates)):
# model_update = {k: model_update[k] + local_updates[i][k] for k in global_model.keys()}
# global_model = {k: global_model[k] + model_update[k]/ len(local_updates) for k in global_model.keys()}
# return global_model
model_update = {k: local_updates[0][k] *0.0 for k in local_updates[0]}
for i in range(len(local_updates)):
model_update = {k: model_update[k] + local_updates[i][k] for k in global_model.keys()}
global_model = {k: global_model[k] + model_update[k]/ len(local_updates) for k in global_model.keys()}
return global_model
if __name__ == '__main__':
args = call_parser()
#user_counter = int(args.num_users / 2)
# user_counter = 2
# print("user counter : ", user_counter)
# server_args = {
# 0: {
# "user_index": user_counter, "dataset": "cifar", "gpu": -1, "round": 3
# },
# 1: {
# "user_index": args.num_users, "dataset": "cifar", "gpu": -1, "round": 3
# }
# }
# args.num_users = user_counter
serve(args)