forked from jahanxb/flcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_fed_aggregate_sep29.py
261 lines (217 loc) · 10.1 KB
/
main_fed_aggregate_sep29.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
from asyncore import read
import copy
from fileinput import filename
import sys
import threading
from collections import OrderedDict
import grpc
import numpy as np
import time, math
import torch
from utils.data_utils import data_setup, DatasetSplit
from utils.model_utils import *
from utils.aggregation import *
from options import call_parser
from models.Update import LocalUpdate
from models.test import test_img
from torch.utils.data import DataLoader
from concurrent import futures
# from utils.rdp_accountant import compute_rdp, get_privacy_spent
import warnings
import glob
import statistics
warnings.filterwarnings("ignore")
torch.cuda.is_available()
def serve(args):
torch.manual_seed(args.seed+args.repeat)
torch.cuda.manual_seed(args.seed+args.repeat)
np.random.seed(args.seed+args.repeat)
args, dataset_train, dataset_test, dict_users = data_setup(args)
print("{:<50}".format("=" * 15 + " data setup " + "=" * 50)[0:60])
print(
'length of dataset:{}'.format(len(dataset_train) + len(dataset_test)))
print('num. of training data:{}'.format(len(dataset_train)))
print('num. of testing data:{}'.format(len(dataset_test)))
print('num. of classes:{}'.format(args.num_classes))
print('num. of users:{}'.format(len(dict_users)))
sample_per_users = int(sum([ len(dict_users[i]) for i in range(len(dict_users))])/len(dict_users))
print('num. of samples per user:{}'.format(sample_per_users))
if args.dataset == 'fmnist' or args.dataset == 'cifar':
dataset_test, val_set = torch.utils.data.random_split(
dataset_test, [9000, 1000])
print(len(dataset_test), len(val_set))
elif args.dataset == 'svhn':
dataset_test, val_set = torch.utils.data.random_split(
dataset_test, [len(dataset_test)-2000, 2000])
print(len(dataset_test), len(val_set))
print("{:<50}".format("=" * 15 + " log path " + "=" * 50)[0:60])
log_path = set_log_path(args)
print(log_path)
args, net_glob = model_setup(args)
print("{:<50}".format("=" * 15 + " model setup " + "=" * 50)[0:60])
###################################### model initialization ###########################
print("{:<50}".format("=" * 15 + " training... " + "=" * 50)[0:60])
t1 = time.time()
net_glob.train()
# copy weights
global_model = copy.deepcopy(net_glob.state_dict())
local_m = []
train_local_loss = []
test_acc = []
norm_med = []
####################################### run experiment ##########################
# # initialize data loader
# data_loader_list = []
# print(len(dict_users))
# for i in range(args.num_users):
# dataset = DatasetSplit(dataset_train, dict_users[i])
# ldr_train = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
# data_loader_list.append(ldr_train)
# ldr_train_public = DataLoader(val_set, batch_size=args.batch_size, shuffle=True)
# m = max(int(args.frac * args.num_users), 1)
# #m = 10
# for t in range(args.round):
# args.local_lr = args.local_lr * args.decay_weight
# selected_idxs = list(np.random.choice(range(args.num_users), m, replace=False))
# print(selected_idxs)
# num_selected_users = len(selected_idxs)
# ###################### local training : SGD for selected users ######################
# loss_locals = []
# local_updates = []
# delta_norms = []
# for i in selected_idxs:
# l_solver = LocalUpdate(args=args)
# net_glob.load_state_dict(global_model)
# # choose local solver
# if args.local_solver == 'local_sgd':
# new_model, loss = l_solver.local_sgd(
# net=copy.deepcopy(net_glob).to(args.device),
# ldr_train=data_loader_list[i])
# # compute local delta
# model_update = {k: new_model[k] - global_model[k] for k in global_model.keys()}
# # compute local model norm
# delta_norm = torch.norm(
# torch.cat([
# torch.flatten(model_update[k])
# for k in model_update.keys()
# ]))
# delta_norms.append(delta_norm)
# # clipping local model or not ? : no clip for cifar10
# # threshold = delta_norm / args.clip
# # if threshold > 1.0:
# # for k in model_update.keys():
# # model_update[k] = model_update[k] / threshold
# local_updates.append(model_update)
# loss_locals.append(loss)
# print("local updates len",len(local_updates), "index",len(local_updates[0]))
# norm_med.append(torch.median(torch.stack(delta_norms)).cpu())
# ##################### communication: avg for all groups #######################
# model_update = {
# k: local_updates[0][k] * 0.0
# for k in local_updates[0].keys()
# }
# for i in range(num_selected_users):
# global_model = {
# k: global_model[k] + local_updates[i][k] / num_selected_users
# for k in global_model.keys()
# }
# ##################### testing on global model #######################
# net_glob.load_state_dict(global_model)
# net_glob.eval()
# test_acc_, _ = test_img(net_glob, dataset_test, args)
# test_acc.append(test_acc_)
# train_local_loss.append(sum(loss_locals) / len(loss_locals))
# # print('t {:3d}: '.format(t, ))
# print('t {:3d}: train_loss = {:.3f}, norm = {:.3f}, test_acc = {:.3f}'.
# format(t, train_local_loss[-1], norm_med[-1], test_acc[-1]))
# if math.isnan(train_local_loss[-1]) or train_local_loss[-1] > 1e8 or t == args.round - 1:
# np.savetxt(log_path + "_test_acc_repeat_" + str(args.repeat) + ".csv",
# test_acc,
# delimiter=",")
# np.savetxt(log_path + "_train_loss_repeat_" + str(args.repeat) + ".csv",
# train_local_loss,
# delimiter=",")
# np.savetxt(log_path + "_norm__repeat_" + str(args.repeat) + ".csv", norm_med, delimiter=",")
# break;
# t2 = time.time()
# hours, rem = divmod(t2-t1, 3600)
# minutes, seconds = divmod(rem, 60)
# print("training time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds))
nodes = 2
local_updates = []
loss_locals = []
for n in range(nodes):
for t in range(args.round):
print(f'appending node{n}{t}')
localupdates = torch.load(f'/mydata/flcode/models/pickles/node{n}[{t}][0].pkl')
lossy = torch.load(f'/mydata/flcode/models/pickles/node{n}-loss[{t}][0].pkl')
local_updates.append(localupdates)
loss_locals.append(lossy[0])
#print("len: ",len(local_updates))
print("local update: ",local_updates[10][0].get('fc3.bias'))
num_selected_users = 2
for t in range(args.round):
for i in range(num_selected_users):
global_model = {
k: global_model[k] + local_updates[t][0].get(k) / num_selected_users
#k: localupdates[0].get(k) - global_model[k] for k in global_model.keys()
#k: global_model[k] + local_updates[i][k] / num_selected_users
for k in global_model.keys()
}
# for i in range(num_selected_users):
# global_model = {
# k: global_model[k] + local_updates[i][0][k] / num_selected_users
# for k in global_model.keys()
# }
#print("global_modeL: ",global_model)
print('################## TrainingTest onum_selected_usersn aggregated Model ######################')
##################### testing on global model #######################
net_glob.load_state_dict(global_model)
net_glob.eval()
test_acc_, _ = test_img(net_glob, dataset_test, args)
test_acc.append(test_acc_)
train_local_loss.append(sum(loss_locals) / len(loss_locals))
print('t {:3d}: '.format(t, ))
print('t {:3d}: train_loss = {:.3f}, norm = Not Recording, test_acc = {:.3f}'.
format(t, train_local_loss[0], test_acc[0]))
if math.isnan(train_local_loss[-1]) or train_local_loss[-1] > 1e8 or t == args.round - 1:
np.savetxt(log_path + "_test_acc_repeat_" + str(args.repeat) + ".csv",
test_acc,
delimiter=",")
np.savetxt(log_path + "_train_loss_repeat_" + str(args.repeat) + ".csv",
train_local_loss,
delimiter=",")
np.savetxt(log_path + "_norm__repeat_" + str(args.repeat) + ".csv", norm_med, delimiter=",")
#break;
print(f't {t}: train_loss = {train_local_loss}, norm = {norm_med}, test_acc = {test_acc}')
t2 = time.time()
hours, rem = divmod(t2 - t1, 3600)
minutes, seconds = divmod(rem, 60)
print("training time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds))
def aggregation_avg(global_model, local_updates):
'''
simple average
'''
model_update = {k: local_updates[0][k] *0.0 for k in local_updates[0].keys()}
for i in range(len(local_updates)):
model_update = {k: model_update[k] + local_updates[i][k] for k in global_model.keys()}
global_model = {k: global_model[k] + model_update[k]/ len(local_updates) for k in global_model.keys()}
return global_model
if __name__ == '__main__':
args = call_parser()
# #user_counter = int(args.num_users / 2)
# user_counter = 2
# print("user counter : ", user_counter)
# server_args = {
# 0: {
# "user_index": user_counter, "dataset": "cifar", "gpu": -1, "round": 10
# },
# 1: {
# "user_index": args.num_users, "dataset": "cifar", "gpu": -1, "round": 10
# }
# }
# args.num_users = user_counter
serve(args)