forked from su2code/SU2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_template.cfg
1046 lines (1013 loc) · 37 KB
/
config_template.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: _________________________________________________________ %
% Author: ___________________________________________________________________ %
% Institution: ______________________________________________________________ %
% Date: __________ %
% File Version 5.0.0 "Raven" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
PHYSICAL_PROBLEM= EULER
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= NONE
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE)
REGIME_TYPE= COMPRESSIBLE
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
% Newtons = kg m/s^2, Pascals = N/m^2,
% Density = kg/m^3, Speed = m/s,
% Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2,
% psf = lbf/ft^2, Density = slug/ft^3,
% Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= SI
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees, only for compressible flows)
AOA= 1.25
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Discard info in the solution and geometry files
% The AoA in the solution and geometry files is critical for design using
% AoA as a design variable.(NO, YES)
DISCARD_INFILES= NO
%
% Activate fixed lift mode (specify a CL instead of AoA, NO/YES)
FIXED_CL_MODE= NO
%
% Target coefficient of lift for fixed lift mode (0.80 by default)
TARGET_CL= 0.80
%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= REYNOLDS
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K, 518.67 R by default)
FREESTREAM_TEMPERATURE= 288.15
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 6.5E6
%
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.0
% -------------------------- CL & CM DRIVER DEFINITION ------------------------%
%
% Estimation of dCL/dAlpha (0.2 per degree by default)
DCL_DALPHA= 0.2
%
% Estimation dCD/dCL (0.07 by default)
DCD_DCL_VALUE= 0.07
%
% Number of times Alpha is updated in a fix CL problem (5 by default)
UPDATE_ALPHA= 5
%
% Evaluate DeltaC_D/DeltaC_X during runtime (YES) or use the provided numbers (NO).
EVAL_DCD_DCX= NO
% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------------------%
%
% Free-stream density (1.2886 Kg/m^3, 0.0025 slug/ft^3 by default)
FREESTREAM_DENSITY= 1.2886
%
% Free-stream velocity (1.0 m/s, 1.0 ft/s by default)
FREESTREAM_VELOCITY= ( 1.0, 0.00, 0.00 )
%
% Free-stream viscosity (1.853E-5 N s/m^2, 3.87E-7 lbf s/ft^2 by default)
FREESTREAM_VISCOSITY= 1.853E-5
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional
% moment (m or in)
REF_LENGTH_MOMENT= 1.0
%
% Reference area for force coefficients (0 implies automatic
% calculation) (m^2 or in^2)
REF_AREA= 1.0
%
% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL
% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS)
FLUID_MODEL= STANDARD_AIR
%
% Ratio of specific heats (1.4 default and the value is hardcoded
% for the model STANDARD_AIR)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded
% for the model STANDARD_AIR)
GAS_CONSTANT= 287.058
%
% Critical Temperature (131.00 K by default)
CRITICAL_TEMPERATURE= 131.00
%
% Critical Pressure (3588550.0 N/m^2 by default)
CRITICAL_PRESSURE= 3588550.0
%
% Critical Density (263.0 Kg/m3 by default)
CRITICAL_DENSITY= 263.0
%
% Acentri factor (0.035 (air))
ACENTRIC_FACTOR= 0.035
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.716E-5
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Molecular Thermal Conductivity that would be constant (0.0257 by default)
KT_CONSTANT= 0.0257
% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER,
% DUAL_TIME_STEPPING-2ND_ORDER, HARMONIC_BALANCE)
UNSTEADY_SIMULATION= NO
%
% Time Step for dual time stepping simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0
UNST_TIMESTEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
UNST_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
% Number of internal iterations (dual time method)
UNST_INT_ITER= 200
%
% Iteration number to begin unsteady restarts
UNST_RESTART_ITER= 0
% ----------------------- DYNAMIC MESH DEFINITION -----------------------------%
%
% Dynamic mesh simulation (NO, YES)
GRID_MOVEMENT= NO
%
% Type of dynamic mesh (NONE, RIGID_MOTION, DEFORMING, ROTATING_FRAME,
% MOVING_WALL, STEADY_TRANSLATION, FLUID_STRUCTURE,
% AEROELASTIC, ELASTICITY, EXTERNAL,
% AEROELASTIC_RIGID_MOTION, GUST)
GRID_MOVEMENT_KIND= DEFORMING
%
% Motion mach number (non-dimensional). Used for initializing a viscous flow
% with the Reynolds number and for computing force coeffs. with dynamic meshes.
MACH_MOTION= 0.8
%
% Moving wall boundary marker(s) (NONE = no marker, ignored for RIGID_MOTION)
MARKER_MOVING= ( NONE )
%
% Coordinates of the motion origin
MOTION_ORIGIN_X= 0.25
MOTION_ORIGIN_Y= 0.0
MOTION_ORIGIN_Z= 0.0
%
% Angular velocity vector (rad/s) about the motion origin
ROTATION_RATE_X = 0.0
ROTATION_RATE_Y = 0.0
ROTATION_RATE_Z = 0.0
%
% Pitching angular freq. (rad/s) about the motion origin
PITCHING_OMEGA_X= 0.0
PITCHING_OMEGA_Y= 0.0
PITCHING_OMEGA_Z= 106.69842
%
% Pitching amplitude (degrees) about the motion origin
PITCHING_AMPL_X= 0.0
PITCHING_AMPL_Y= 0.0
PITCHING_AMPL_Z= 1.01
%
% Pitching phase offset (degrees) about the motion origin
PITCHING_PHASE_X= 0.0
PITCHING_PHASE_Y= 0.0
PITCHING_PHASE_Z= 0.0
%
% Translational velocity (m/s) in the x, y, & z directions
TRANSLATION_RATE_X = 0.0
TRANSLATION_RATE_Y = 0.0
TRANSLATION_RATE_Z = 0.0
%
% Plunging angular freq. (rad/s) in x, y, & z directions
PLUNGING_OMEGA_X= 0.0
PLUNGING_OMEGA_Y= 0.0
PLUNGING_OMEGA_Z= 0.0
%
% Plunging amplitude (m) in x, y, & z directions
PLUNGING_AMPL_X= 0.0
PLUNGING_AMPL_Y= 0.0
PLUNGING_AMPL_Z= 0.0
%
% Move Motion Origin for marker moving (1 or 0)
MOVE_MOTION_ORIGIN = 0
% -------------- AEROELASTIC SIMULATION (Typical Section Model) ---------------%
%
% Activated by GRID_MOVEMENT_KIND option
%
% The flutter speed index (modifies the freestream condition in the solver)
FLUTTER_SPEED_INDEX = 0.6
%
% Natural frequency of the spring in the plunging direction (rad/s)
PLUNGE_NATURAL_FREQUENCY = 100
%
% Natural frequency of the spring in the pitching direction (rad/s)
PITCH_NATURAL_FREQUENCY = 100
%
% The airfoil mass ratio
AIRFOIL_MASS_RATIO = 60
%
% Distance in semichords by which the center of gravity lies behind
% the elastic axis
CG_LOCATION = 1.8
%
% The radius of gyration squared (expressed in semichords)
% of the typical section about the elastic axis
RADIUS_GYRATION_SQUARED = 3.48
%
% Solve the aeroelastic equations every given number of internal iterations
AEROELASTIC_ITER = 3
% --------------------------- GUST SIMULATION ---------------------------------%
%
% Apply a wind gust (NO, YES)
WIND_GUST = NO
%
% Type of gust (NONE, TOP_HAT, SINE, ONE_M_COSINE, VORTEX, EOG)
GUST_TYPE = NONE
%
% Direction of the gust (X_DIR or Y_DIR)
GUST_DIR = Y_DIR
%
% Gust wavelenght (meters)
GUST_WAVELENGTH= 10.0
%
% Number of gust periods
GUST_PERIODS= 1.0
%
% Gust amplitude (m/s)
GUST_AMPL= 10.0
%
% Time at which to begin the gust (sec)
GUST_BEGIN_TIME= 0.0
%
% Location at which the gust begins (meters) */
GUST_BEGIN_LOC= 0.0
% ------------------------ SUPERSONIC SIMULATION ------------------------------%
%
% Evaluate equivalent area on the Near-Field (NO, YES)
EQUIV_AREA= NO
%
% Integration limits of the equivalent area ( xmin, xmax, Dist_NearField )
EA_INT_LIMIT= ( 1.6, 2.9, 1.0 )
%
% Equivalent area scale factor ( EA should be ~ force based objective functions )
EA_SCALE_FACTOR= 1.0
%
% Fix an azimuthal line due to misalignments of the near-field
FIX_AZIMUTHAL_LINE= 90.0
%
% Drag weight in sonic boom Objective Function (from 0.0 to 1.0)
DRAG_IN_SONICBOOM= 0.0
% -------------------------- ENGINE SIMULATION --------------------------------%
%
% Highlite area to compute MFR (1 in2 by default)
HIGHLITE_AREA= 1.0
%
% Fan polytropic efficiency (1.0 by default)
FAN_POLY_EFF= 1.0
%
% Only half engine is in the computational grid (NO, YES)
ENGINE_HALF_MODEL= NO
%
% Damping factor for the engine inflow.
DAMP_ENGINE_INFLOW= 0.95
%
% Damping factor for the engine exhaust.
DAMP_ENGINE_EXHAUST= 0.95
%
% Engine nu factor (SA model).
ENGINE_NU_FACTOR= 3.0
%
% Definition of the actuator disk with a double surface (NO, YES)
ACTDISK_DOUBLE_SURFACE= NO
%
% Divide the Actuator Disk surface in SU2_DEF to write a double surface .su2 file (NO, YES)
ACTDISK_SU2_DEF= NO
%
% Mass flow rate of the secondary flow (percentage of the main flow, 0% by default)
ACTDISK_SECONDARY_FLOW= 0
%
% Actuator disk jump definition using ratio or difference (DIFFERENCE, RATIO)
ACTDISK_JUMP= DIFFERENCE
%
% Number of times BC Thrust is updated in a fix Net Thrust problem (5 by default)
UPDATE_BCTHRUST= 10
%
% Initial BC Thrust guess for POWER or D-T driver (4000.0 lbf by default)
INITIAL_BCTHRUST= 4000.0
%
% Distortion rack definition (number of radial probes, degrees)
DISTORTION_RACK= (5, 45)
%
% Initialization with a subsonic flow around the engine.
SUBSONIC_ENGINE= NO
%
% Axis of the cylinder that defines the subsonic region (A_X, A_Y, A_Z, B_X, B_Y, B_Z, Radius)
SUBSONIC_ENGINE_CYL= ( 0.0, 0.0, 0.0, 1.0, 0.0 , 0.0, 1.0 )
%
% Flow variables that define the subsonic region (Mach, Alpha, Beta, Pressure, Temperature)
SUBSONIC_ENGINE_VALUES= ( 0.4, 0.0, 0.0, 2116.216, 518.67 )
% --------------------- INVERSE DESIGN SIMULATION -----------------------------%
%
% Evaluate an inverse design problem using Cp (NO, YES)
INV_DESIGN_CP= NO
%
% Evaluate an inverse design problem using heat flux (NO, YES)
INV_DESIGN_HEATFLUX= NO
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
MARKER_EULER= ( airfoil )
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= ( NONE )
%
% Navier-Stokes (no-slip), isothermal wall marker(s) (NONE = no marker)
% Format: ( marker name, constant wall temperature (K), ... )
MARKER_ISOTHERMAL= ( NONE )
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( farfield )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( NONE )
%
% Internal boundary marker(s) e.g. no boundary condition (NONE = no marker)
MARKER_INTERNAL= ( NONE )
%
% Near-Field boundary marker(s) (NONE = no marker)
MARKER_NEARFIELD= ( NONE )
%
% Zone interface boundary marker(s) (NONE = no marker)
MARKER_INTERFACE= ( NONE )
%
% Actuator disk boundary type (VARIABLES_JUMP, NET_THRUST, BC_THRUST,
% DRAG_MINUS_THRUST, MASSFLOW, POWER)
ACTDISK_TYPE= VARIABLES_JUMP
%
% Actuator disk boundary marker(s) with the following formats (NONE = no marker)
% Variables Jump: ( inlet face marker, outlet face marker,
% Takeoff pressure jump (psf), Takeoff temperature jump (R), Takeoff rev/min,
% Cruise pressure jump (psf), Cruise temperature jump (R), Cruise rev/min )
% Net Thrust: ( inlet face marker, outlet face marker,
% Takeoff net thrust (lbs), 0.0, Takeoff rev/min,
% Cruise net thrust (lbs), 0.0, Cruise rev/min )
% BC Thrust: ( inlet face marker, outlet face marker,
% Takeoff BC thrust (lbs), 0.0, Takeoff rev/min,
% Cruise BC thrust (lbs), 0.0, Cruise rev/min )
% Drag-Thrust: ( inlet face marker, outlet face marker,
% Takeoff Drag-Thrust (lbs), 0.0, Takeoff rev/min,
% Cruise Drag-Thrust (lbs), 0.0, Cruise rev/min )
% MasssFlow: ( inlet face marker, outlet face marker,
% Takeoff massflow (lbs/s), 0.0, Takeoff rev/min,
% Cruise massflowt (lbs/s), 0.0, Cruise rev/min )
% Power: ( inlet face marker, outlet face marker,
% Takeoff power (HP), 0.0, Takeoff rev/min
% Cruise power (HP), 0.0, Cruise rev/min )
MARKER_ACTDISK= ( NONE )
%
% Inlet boundary type (TOTAL_CONDITIONS, MASS_FLOW)
INLET_TYPE= TOTAL_CONDITIONS
%
% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Total Conditions: (inlet marker, total temp, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Mass Flow: (inlet marker, density, velocity magnitude, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Incompressible: (inlet marker, NULL, velocity magnitude, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
MARKER_INLET= ( NONE )
%
% Supersonic inlet boundary marker(s) (NONE = no marker)
% Format: (inlet marker, temperature, static pressure, velocity_x,
% velocity_y, velocity_z, ... ), i.e. primitive variables specified.
MARKER_SUPERSONIC_INLET= ( NONE )
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= ( NONE )
%
% Supersonic outlet boundary marker(s) (NONE = no marker)
MARKER_SUPERSONIC_OUTLET= ( NONE )
%
% Periodic boundary marker(s) (NONE = no marker)
% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y,
% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis,
% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... )
MARKER_PERIODIC= ( NONE )
%
% Engine Inflow boundary type (FAN_FACE_MACH, FAN_FACE_PRESSURE, FAN_FACE_MDOT)
ENGINE_INFLOW_TYPE= FAN_FACE_MACH
%
% Engine inflow boundary marker(s) (NONE = no marker)
% Format: (engine inflow marker, fan face Mach, ... )
MARKER_ENGINE_INFLOW= ( NONE )
%
% Engine exhaust boundary marker(s) with the following formats (NONE = no marker)
% Format: (engine exhaust marker, total nozzle temp, total nozzle pressure, ... )
MARKER_ENGINE_EXHAUST= ( NONE )
%
% Displacement boundary marker(s) (NONE = no marker)
% Format: ( displacement marker, displacement value normal to the surface, ... )
MARKER_NORMAL_DISPL= ( NONE )
%
% Load boundary marker(s) (NONE = no marker)
% Format: ( load marker, force value normal to the surface, ... )
MARKER_NORMAL_LOAD= ( NONE )
%
% Pressure boundary marker(s) (NONE = no marker)
% Format: ( pressure marker )
MARKER_PRESSURE= ( NONE )
%
% Neumann bounday marker(s) (NONE = no marker)
MARKER_NEUMANN= ( NONE )
%
% Dirichlet boundary marker(s) (NONE = no marker)
MARKER_DIRICHLET= ( NONE )
%
% Riemann boundary marker(s) (NONE = no marker)
% Format: (marker, data kind flag, list of data)
MARKER_RIEMANN= ( NONE )
%
% Non Reflecting boundary conditions marker(s) (NONE = no marker)
% Format: (marker, data kind flag, list of data)
MARKER_NRBC= ( NONE )
% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( airfoil )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( airfoil )
%
% Marker(s) of the surface where obj. func. (design problem) will be evaluated
MARKER_DESIGNING = ( airfoil )
%
% Marker(s) of the surface that is going to be analyzed in detail (massflow, average pressure, distortion, etc)
MARKER_ANALYZE = ( airfoil )
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% CFL number (stating value for the adaptive CFL number)
CFL_NUMBER= 10.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.25, 50.0 )
%
% Maximum Delta Time in local time stepping simulations
MAX_DELTA_TIME= 1E6
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Objective function in optimization problem (DRAG, LIFT, SIDEFORCE, MOMENT_X,
% MOMENT_Y, MOMENT_Z, EFFICIENCY,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% FORCE_X, FORCE_Y, FORCE_Z, THRUST,
% TORQUE, FREE_SURFACE, TOTAL_HEATFLUX,
% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE,
% INVERSE_DESIGN_HEATFLUX, AVG_TOTAL_PRESSURE,
% MASS_FLOW_RATE)
OBJECTIVE_FUNCTION= DRAG
% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Reference element length for computing the slope and sharp edges
% limiters (0.1 m, 5.0 in by default)
REF_ELEM_LENGTH= 0.1
%
% Coefficient for the limiter
LIMITER_COEFF= 0.3
%
% Freeze the value of the limiter after a number of iterations
LIMITER_ITER= 999999
%
% Coefficient for the sharp edges limiter
SHARP_EDGES_COEFF= 3.0
%
% Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP_EDGES= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP= NO
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER_JACOBI,
% SMOOTHER_ILU0, SMOOTHER_LUSGS,
% SMOOTHER_LINELET)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU0, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5
% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER
%
% Slope limiter (VENKATAKRISHNAN, BARTH_JESPERSEN)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Entropy fix coefficient (0.0 implies no entropy fixing, 1.0 implies scalar
% artificial dissipation)
ENTROPY_FIX_COEFF= 0.001
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Viscous limiter (NO, YES)
VISCOUS_LIMITER_FLOW= NO
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_FLOW= 0.95
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_TURB= 1ST_ORDER
%
% Slope limiter (VENKATAKRISHNAN)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Viscous limiter (NO, YES)
VISCOUS_LIMITER_TURB= NO
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 1.0
%
% Relaxation coefficient
RELAXATION_FACTOR_TURB= 0.95
% --------------------- HEAT NUMERICAL METHOD DEFINITION ----------------------%
%
% Value of the thermal diffusivity
THERMAL_DIFFUSIVITY= 1.0
% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, ROE)
CONV_NUM_METHOD_ADJFLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_ADJFLOW= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, SHARP_EDGES, WALL_DISTANCE)
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN
%
% 1st, 2nd, and 4th order artificial dissipation coefficients
AD_COEFF_ADJFLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT)
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_ADJFLOW= 1.0
%
% Reduction factor of the CFL coefficient in the adjoint problem
CFL_REDUCTION_ADJFLOW= 0.8
%
% Limit value for the adjoint variable
LIMIT_ADJFLOW= 1E6
%
% Multigrid adjoint problem (NO, YES)
MG_ADJFLOW= YES
% ---------------- ADJOINT-TURBULENT NUMERICAL METHOD DEFINITION --------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_ADJTURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_ADJTURB= 1ST_ORDER
%
% Slope limiter (VENKATAKRISHNAN)
SLOPE_LIMITER_ADJTURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_ADJTURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the adjoint turbulent problem
CFL_REDUCTION_ADJTURB= 0.01
% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------%
%
% Geometrical evaluation mode (FUNCTION, GRADIENT)
GEO_MODE= FUNCTION
%
% Marker(s) of the surface where geometrical based func. will be evaluated
GEO_MARKER= ( airfoil )
%
% Orientation of airfoil sections (X_AXIS, Y_AXIS, Z_AXIS)
GEO_AXIS_STATIONS= Y_AXIS
%
% Coordinate of the sections
GEO_LOCATION_STATIONS= (0.0, 0.5, 1.0)
%
% Plot loads and Cp distributions on each airfoil section
GEO_PLOT_STATIONS= NO
%
% Number of section cuts to make when calculating wing geometry
GEO_WING_STATIONS= 101
%
% Bounds (X coordinate) for the wing geometry computation (MinValue, MaxValue)
GEO_WING_BOUNDS= (1.5, 3.5)
% ------------------------- GRID ADAPTATION STRATEGY --------------------------%
%
% Kind of grid adaptation (NONE, PERIODIC, FULL, FULL_FLOW, GRAD_FLOW,
% FULL_ADJOINT, GRAD_ADJOINT, GRAD_FLOW_ADJ, ROBUST,
% FULL_LINEAR, COMPUTABLE, COMPUTABLE_ROBUST,
% REMAINING, WAKE, SMOOTHING, SUPERSONIC_SHOCK)
KIND_ADAPT= FULL_FLOW
%
% Percentage of new elements (% of the original number of elements)
NEW_ELEMS= 5
%
% Scale factor for the dual volume
DUALVOL_POWER= 0.5
%
% Adapt the boundary elements (NO, YES)
ADAPT_BOUNDARY= YES
% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------%
%
% Kind of deformation (NO_DEFORMATION, TRANSLATION, ROTATION, SCALE,
% FFD_SETTING, FFD_NACELLE
% FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST
% FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, FFD_TWIST_2D,
% HICKS_HENNE, SURFACE_BUMP)
DV_KIND= FFD_SETTING
%
% Marker of the surface in which we are going apply the shape deformation
DV_MARKER= ( airfoil )
%
% Parameters of the shape deformation
% - NO_DEFORMATION ( 1.0 )
% - TRANSLATION ( x_Disp, y_Disp, z_Disp ), as a unit vector
% - ROTATION ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - SCALE ( 1.0 )
% - ANGLE_OF_ATTACK ( 1.0 )
% - FFD_SETTING ( 1.0 )
% - FFD_CONTROL_POINT ( FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp )
% - FFD_NACELLE ( FFD_BoxTag, rho_Ind, theta_Ind, phi_Ind, rho_Disp, phi_Disp )
% - FFD_GULL ( FFD_BoxTag, j_Ind )
% - FFD_ANGLE_OF_ATTACK ( FFD_BoxTag, 1.0 )
% - FFD_CAMBER ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_THICKNESS ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_TWIST ( FFD_BoxTag, j_Ind, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_CONTROL_POINT_2D ( FFD_BoxTag, i_Ind, j_Ind, x_Disp, y_Disp )
% - FFD_CAMBER_2D ( FFD_BoxTag, i_Ind )
% - FFD_THICKNESS_2D ( FFD_BoxTag, i_Ind )
% - FFD_TWIST_2D ( FFD_BoxTag, x_Orig, y_Orig )
% - HICKS_HENNE ( Lower Surface (0)/Upper Surface (1)/Only one Surface (2), x_Loc )
% - SURFACE_BUMP ( x_Start, x_End, x_Loc )
DV_PARAM= ( 1, 0.5 )
%
% Value of the shape deformation
DV_VALUE= 0.01
% ------------------------ GRID DEFORMATION PARAMETERS ------------------------%
%
% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB)
DEFORM_LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU0, LU_SGS, JACOBI)
DEFORM_LINEAR_SOLVER_PREC= LU_SGS
%
% Number of smoothing iterations for mesh deformation
DEFORM_LINEAR_ITER= 1000
%
% Number of nonlinear deformation iterations (surface deformation increments)
DEFORM_NONLINEAR_ITER= 1
%
% Print the residuals during mesh deformation to the console (YES, NO)
DEFORM_CONSOLE_OUTPUT= YES
%
% Factor to multiply smallest cell volume for deform tolerance (0.001 default)
DEFORM_TOL_FACTOR = 1E-6
%
% Deformation coefficient (in theory from -1.0 to 0.5, a large value is also valid)
DEFORM_COEFF = 1E6
%
% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME,
% WALL_DISTANCE, CONSTANT_STIFFNESS)
DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME
%
% Visualize the deformation (NO, YES)
VISUALIZE_DEFORMATION= NO
% -------------------- FREE-FORM DEFORMATION PARAMETERS -----------------------%
%
% Tolerance of the Free-Form Deformation point inversion
FFD_TOLERANCE= 1E-10
%
% Maximum number of iterations in the Free-Form Deformation point inversion
FFD_ITERATIONS= 500
%
% FFD box definition: 3D case (FFD_BoxTag, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4,
% X5, Y5, Z5, X6, Y6, Z6, X7, Y7, Z7, X8, Y8, Z8)
% 2D case (FFD_BoxTag, X1, Y1, 0.0, X2, Y2, 0.0, X3, Y3, 0.0, X4, Y4, 0.0,
% 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
FFD_DEFINITION= (MAIN_BOX, 0.5, 0.25, -0.25, 1.5, 0.25, -0.25, 1.5, 0.75, -0.25, 0.5, 0.75, -0.25, 0.5, 0.25, 0.25, 1.5, 0.25, 0.25, 1.5, 0.75, 0.25, 0.5, 0.75, 0.25)
%
% FFD box degree: 3D case (x_degree, y_degree, z_degree)
% 2D case (x_degree, y_degree, 0)
FFD_DEGREE= (10, 10, 1)
%
% Surface grid continuity at the intersection with the faces of the FFD boxes.
% To keep a particular level of surface continuity, SU2 automatically freezes the right
% number of control point planes (NO_DERIVATIVE, 1ST_DERIVATIVE, 2ND_DERIVATIVE, USER_INPUT)
FFD_CONTINUITY= 2ND_DERIVATIVE
%
% Definition of the FFD planes to be frozen in the FFD (x,y,z) or (r,theta,z) or (r, theta, phi).
% Value from 0 FFD degree in that direction. Pick a value larger than degree if you don't want to fix any plane.
FFD_FIX_I= (0,2,3)
FFD_FIX_J= (0,2,3)
FFD_FIX_K= (0,2,3)
%
% There is a symmetry plane (j=0) for all the FFD boxes (YES, NO)
FFD_SYMMETRY_PLANE= NO
%
% FFD coordinate system (CARTESIAN, CYLINDRICAL, SPHERICAL)
FFD_COORD_SYSTEM= CARTESIAN
%
% Vector from the cartesian axis the cylindrical or spherical axis (using cartesian coordinates)
% Note that the location of the axis will affect the wall curvature of the FFD box as well as the
% design variable effect.
FFD_AXIS= (0.0, 0.0, 0.0)
%
% FFD Blending function: Bezier curves with global support (BEZIER), uniform BSplines with local support (BSPLINE_UNIFORM)
FFD_BLENDING= BEZIER
%
% Order of the BSplines
FFD_BSPLINE_ORDER= 2, 2, 2
%
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
EXT_ITER= 999999
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 5
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS)
CAUCHY_FUNC_FLOW= DRAG
%
% Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH)
CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= mesh_NACA0012_inv.su2
%
% Mesh input file format (SU2, CGNS)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW,
% FIELDVIEW, FIELDVIEW_BINARY)
OUTPUT_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file with the forces breakdown
BREAKDOWN_FILENAME= forces_breakdown.dat
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function
VALUE_OBJFUNC_FILENAME= of_eval.dat
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
WRT_SOL_FREQ= 1000
%
% Writing solution file frequency for physical time steps (dual time)
WRT_SOL_FREQ_DUALTIME= 1
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Writing convergence history frequency (dual time, only written to screen)
WRT_CON_FREQ_DUALTIME= 10
%
% Output residual values in the solution files
WRT_RESIDUALS= NO
%
% Output limiters values in the solution files
WRT_LIMITERS= NO
%
% Output the sharp edges detector
WRT_SHARPEDGES= NO
%
% Minimize the required output memory
LOW_MEMORY_OUTPUT= NO
%
% Verbosity of console output: NONE removes minor MPI overhead (NONE, HIGH)
CONSOLE_OUTPUT_VERBOSITY= HIGH
% --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------%
%
% Available flow based objective functions or constraint functions
% DRAG, LIFT, SIDEFORCE, EFFICIENCY,
% FORCE_X, FORCE_Y, FORCE_Z,
% MOMENT_X, MOMENT_Y, MOMENT_Z,
% THRUST, TORQUE, FIGURE_OF_MERIT,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% TOTAL_HEATFLUX, MAXIMUM_HEATFLUX,
% INVERSE_DESIGN_PRESSURE, INVERSE_DESIGN_HEATFLUX,
% FREE_SURFACE, AVG_TOTAL_PRESSURE, MASS_FLOW_RATE
%
% Available geometrical based objective functions or constraint functions
% WING_VOLUME, WING_MIN_MAXTHICKNESS, WING_MAX_CHORD, WING_MIN_TOC, WING_MAX_TWIST,
% WING_MAX_CURVATURE, WING_MAX_DIHEDRAL
% MAX_THICKNESS, 1/4_THICKNESS, 1/2_THICKNESS, 3/4_THICKNESS, AREA, AOA, CHORD,
% MAX_THICKNESS_SEC1, MAX_THICKNESS_SEC2, MAX_THICKNESS_SEC3, MAX_THICKNESS_SEC4, MAX_THICKNESS_SEC5,
% 1/4_THICKNESS_SEC1, 1/4_THICKNESS_SEC2, 1/4_THICKNESS_SEC3, 1/4_THICKNESS_SEC4, 1/4_THICKNESS_SEC5,
% 1/2_THICKNESS_SEC1, 1/2_THICKNESS_SEC2, 1/2_THICKNESS_SEC3, 1/2_THICKNESS_SEC4, 1/2_THICKNESS_SEC5,
% 3/4_THICKNESS_SEC1, 3/4_THICKNESS_SEC2, 3/4_THICKNESS_SEC3, 3/4_THICKNESS_SEC4, 3/4_THICKNESS_SEC5,
% AREA_SEC1, AREA_SEC2, AREA_SEC3, AREA_SEC4, AREA_SEC5,
% AOA_SEC1, AOA_SEC2, AOA_SEC3, AOA_SEC4, AOA_SEC5,