-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinfer.py
126 lines (104 loc) · 5.32 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import sys
import random
import argparse
from makelongvideo.pipelines.pipeline_makelongvideo import MakeLongVideoPipeline
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from makelongvideo.models.unet import UNet3DConditionModel
from makelongvideo.util import save_videos_grid, ddim_inversion
import torch
import decord
decord.bridge.set_bridge('torch')
from einops import rearrange
import torch.nn.functional as F
def randstr(l=16):
s =''
chars ='ABCDEFGHIGKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz0123456789'
for i in range(l):
s += chars[random.randint(0, len(chars)-1)]
return s
parser = argparse.ArgumentParser(description='Make Long Video')
parser.add_argument('--prompt', type=str, default=None, required=True, help='prompt')
parser.add_argument('--negprompt', type=str, default=None, help='negtive prompt')
#parser.add_argument('--negprompt', type=str, default='vague, static', help='negtive prompt')
#parser.add_argument('--negprompt', type=str, default='blurred', help='negtive prompt')
parser.add_argument('--speed', type=int, default=None, help='playback speed')
parser.add_argument('--inv_latent_path', type=str, default=None, help='inversion latent path')
parser.add_argument('--sample_video_path', type=str, default=None, help='sample video path')
parser.add_argument('--guidance_scale', type=float, default=12.5, help='guidance scale')
#parser.add_argument('--guidance_scale', type=float, default=17., help='guidance scale')
parser.add_argument('--save', action='store_true', default=False, help='save parameters')
parser.add_argument('--width', type=int, default=256, help='width')
parser.add_argument('--height', type=int, default=256, help='height')
args = parser.parse_args()
pretrained_model_path = "./checkpoints/stable-diffusion-v1-4"
my_model_path = "./outputs/makelongvideo"
unet = UNet3DConditionModel.from_pretrained(my_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
state_dict = unet.state_dict()
#print(state_dict['up_blocks.2.attentions.0.transformer_blocks.0.temporal_rel_pos_bias.net.2.weight'])
#print(state_dict['up_blocks.2.attentions.2.transformer_blocks.0.attn_temp.to_q.weight'])
if args.save:
print(state_dict)
sys.exit(0)
pipeline = MakeLongVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipeline.enable_xformers_memory_efficient_attention()
pipeline.enable_vae_slicing()
ddim_inv_latent = None
if args.sample_video_path is not None:
noise_scheduler = DDPMScheduler.from_pretrained(my_model_path, subfolder="scheduler")
ddim_inv_scheduler = DDIMScheduler.from_pretrained(my_model_path, subfolder='scheduler')
ddim_inv_scheduler.set_timesteps(50)
sample_start_idx = 0
sample_frame_rate = 2
n_sample_frames = 24
vr = decord.VideoReader(args.sample_video_path, width=args.width, height=args.height)
framelst = list(range(sample_start_idx, len(vr), sample_frame_rate))
sample_index = framelst[0:n_sample_frames]
video = vr.get_batch(sample_index)
pixel_values = rearrange(video, "(b f) h w c -> b f c h w", f=n_sample_frames) / 127.5 - 1.0
b, f, c, h, w = pixel_values.shape
video_length = pixel_values.shape[1]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
###
#pixel_values = F.interpolate(pixel_values, size=(32,32))
#pixel_values = F.interpolate(pixel_values, size=(h,w))
###
pixel_values = pixel_values.to('cuda', dtype=torch.float16)
with torch.no_grad():
latents = pipeline.vae.encode(pixel_values).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * 0.18215
'''
###
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
latents = noise_scheduler.add_noise(latents, noise, timesteps)
###
'''
ddim_inv_latent = ddim_inversion(
pipeline, ddim_inv_scheduler, video_latent=latents, num_inv_steps=50, prompt=""
)[-1].to(torch.float16)
elif args.inv_latent_path is not None:
ddim_inv_latent = torch.load(args.inv_latent_path).to(torch.float16)
#else:
elif False:
ddim_inv_latent = torch.randn([1, 4, 24, 64, 64]).to(torch.float16)
#ddim_inv_latent = torch.randn([1, 4, 1, 64, 64]).repeat_interleave(24,dim=2)
prompt = "{} ...{}x".format(args.prompt, args.speed) if args.speed is not None else args.prompt
print('prompt:', prompt)
video = pipeline(prompt, latents=ddim_inv_latent, video_length=24, height=args.height, width=args.width, num_inference_steps=50, guidance_scale=args.guidance_scale, negative_prompt=args.negprompt).videos
if not os.path.exists("./outputs/results"):
os.mkdir("./outputs/results")
fps = 24//args.speed if args.speed is not None else 12
if args.speed is not None:
resultfile = f"./outputs/results/{args.prompt[:16]}-{randstr(6)}-{args.speed}x.gif"
else:
resultfile = f"./outputs/results/{args.prompt[:16]}-{randstr(6)}.gif"
save_videos_grid(video, resultfile, fps=fps)