-
Notifications
You must be signed in to change notification settings - Fork 9
/
simplekv.c
347 lines (291 loc) · 11 KB
/
simplekv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/types.h>
#include <errno.h>
#include <time.h>
#include <argp.h>
#include "simplekv.h"
#include "helpers.h"
#include "range.h"
#include "parse.h"
#include "create.h"
#include "get.h"
size_t worker_num;
size_t total_node;
size_t *layer_cap;
key__t max_key;
Node *cache;
size_t cache_cap;
const char *argp_program_version = "SimpleKV 0.1";
const char *argp_program_bug_address = "<[email protected]>";
static char doc[] =
"SimpleKV Benchmark for Oliver XRP Kernel\n\nCommands: create, get, range\v\
This utility provides several tools for testing and benchmarking \
SimpleKV database files on XRP enabled kernels. \
\n\nIf you are using XRP eBPF functions it is your responsibility to ensure \
the correct function is loaded before executing your query with SimpleKV. \
SimpleKV currently DOES NOT verify that the correct eBPF is loaded.";
int get_handler(char *db_path, int flag) {
int fd = open(db_path, flag | O_DIRECT, 0655);
if (fd < 0) {
printf("Failed to open file %s!\n", db_path);
exit(1);
}
return fd;
}
/* Open database and logfile; calculate number of nodes per layer of B+tree */
int initialize(size_t layer_num, int mode, char *db_path) {
int db;
if (mode == LOAD_MODE) {
db = get_handler(db_path, O_CREAT|O_TRUNC|O_WRONLY);
} else {
db = get_handler(db_path, O_RDONLY);
}
layer_cap = (size_t *)malloc(layer_num * sizeof(size_t));
total_node = 1;
layer_cap[0] = 1;
for (size_t i = 1; i < layer_num; i++) {
layer_cap[i] = layer_cap[i - 1] * FANOUT;
total_node += layer_cap[i];
}
/* NOTE: this is actually 1 past the last key, since the keys start at 0 */
max_key = layer_cap[layer_num - 1] * NODE_CAPACITY;
cache_cap = 0;
printf("%lu blocks in total, max key is %lu\n", total_node, max_key);
return db;
}
/* Cache the first [layer_num] layers of the tree */
void build_cache(int db_fd, size_t layer_num, size_t cache_level) {
/* Cache level cannot exceed min(layer_num, 3) */
cache_level = cache_level > layer_num ? layer_num : cache_level;
cache_level = cache_level > 3 ? 3 : cache_level;
/* NB: This is a hack, but since we have global variables we need this */
if (cache_level == 0) {
cache = malloc(BLK_SIZE);
return;
}
size_t entry_num = 0;
for (size_t i = 0; i < cache_level; i++) {
entry_num += layer_cap[i];
}
if (posix_memalign((void **)&cache, 512, entry_num * sizeof(Node))) {
perror("posix_memalign failed");
exit(1);
}
size_t head = 0, tail = 1;
read_node(encode(0), &cache[head], db_fd);
while (tail < entry_num) {
for (size_t i = 0; i < NODE_CAPACITY; i++) {
read_node(cache[head].ptr[i], &cache[tail], db_fd);
cache[head].ptr[i] = (ptr__t)(&cache[tail]); // in-memory cache entry has in-memory pointer
tail++;
}
head++;
}
cache_cap = entry_num; // enable the cache
printf("Cache built. %lu layers %lu entries in total.\n", cache_level, entry_num);
}
void free_globals(void) {
free(layer_cap);
free(cache);
}
int terminate(void) {
printf("Done!\n");
free_globals();
return 0;
}
void initialize_workers(WorkerArg *args, size_t total_op_count, char *db_path, int use_xrp, int bpf_fd) {
size_t offset = 0;
args[0].latency_arr = (size_t *) malloc(total_op_count * sizeof(size_t));
BUG_ON(args[0].latency_arr == NULL);
for (size_t i = 0; i < worker_num; i++) {
args[i].index = i;
args[i].op_count = (total_op_count / worker_num) + (i < total_op_count % worker_num);
args[i].db_handler = get_handler(db_path, O_RDONLY);
args[i].timer = 0;
args[i].use_xrp = use_xrp;
args[i].bpf_fd = bpf_fd;
args[i].latency_arr = args[0].latency_arr + offset;
offset += args[i].op_count;
}
}
void start_workers(pthread_t *tids, WorkerArg *args) {
for (size_t i = 0; i < worker_num; i++) {
pthread_create(&tids[i], NULL, subtask, (void*)&args[i]);
}
}
void terminate_workers(pthread_t *tids, WorkerArg *args) {
for (size_t i = 0; i < worker_num; i++) {
pthread_join(tids[i], NULL);
close(args[i].db_handler);
}
}
int cmp(const void *a, const void *b) {
size_t val_a = *((const size_t *) a);
size_t val_b = *((const size_t *) b);
if (val_a == val_b) {
return 0;
} else if (val_a < val_b) {
return -1;
} else {
return 1;
}
}
static double get_percentile(size_t *latency_arr, size_t request_num, double percentile)
{
double exact_index = ((double) (request_num - 1)) * percentile;
double left_index = floor(exact_index);
double right_index = ceil(exact_index);
double left_value = (double) latency_arr[(size_t) left_index];
double right_value = (double) latency_arr[(size_t) right_index];
double value = left_value + (exact_index - left_index) * (right_value - left_value);
return value;
}
static void print_tail_latency(WorkerArg* args, size_t request_num) {
size_t *latency_arr = args[0].latency_arr;
qsort(latency_arr, request_num, sizeof(size_t), cmp);
printf("95%% latency: %f us\n", get_percentile(latency_arr, request_num, 0.95) / 1000);
printf("99%% latency: %f us\n", get_percentile(latency_arr, request_num, 0.99) / 1000);
printf("99.9%% latency: %f us\n", get_percentile(latency_arr, request_num, 0.999) / 1000);
}
int run(char *db_path, size_t layer_num, size_t request_num, size_t thread_num, int use_xrp,
int bpf_fd, size_t cache_level) {
printf("Running benchmark with %ld layers, %ld requests, and %ld thread(s)\n",
layer_num, request_num, thread_num);
int db_fd = initialize(layer_num, RUN_MODE, db_path);
/* Cache up to 3 layers of the B+tree */
build_cache(db_fd, layer_num, cache_level);
worker_num = thread_num;
struct timespec start, end;
pthread_t tids[worker_num];
WorkerArg args[worker_num];
initialize_workers(args, request_num, db_path, use_xrp, bpf_fd);
clock_gettime(CLOCK_REALTIME, &start);
srandom(start.tv_nsec ^ start.tv_sec);
start_workers(tids, args);
terminate_workers(tids, args);
clock_gettime(CLOCK_REALTIME, &end);
long total_latency = 0;
for (size_t i = 0; i < worker_num; i++) total_latency += args[i].timer;
long run_time = 1000000000 * (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec);
printf("Average throughput: %f op/s latency: %f usec\n",
(double)request_num / run_time * 1000000000, (double)total_latency / request_num / 1000);
print_tail_latency(args, request_num);
size_t num_extreme_latency = 0;
for (size_t i = 0; i < request_num; ++i) {
if (args[0].latency_arr[i] >= 1000000) {
++num_extreme_latency;
}
}
printf("Percentage of requests with latency >= 1ms: %.4f%%\n",
(100.0 * (double) num_extreme_latency) / ((double) request_num));
free(args[0].latency_arr);
return terminate();
}
void *subtask(void *args) {
WorkerArg *r = (WorkerArg*)args;
struct timespec tps, tpe;
srand(r->index);
printf("thread %ld op_count %ld\n", r->index, r->op_count);
for (size_t i = 0; i < r->op_count; i++) {
key__t key = random() % max_key;
/* Time and execute the XRP lookup */
clock_gettime(CLOCK_REALTIME, &tps);
struct Query query = new_query(key);
ptr__t index_offset = ROOT_NODE_OFFSET;
/* Use the cache, if it's set */
if (cache_cap > 0) {
index_offset = (ptr__t) (&cache[0]);
do {
index_offset = nxt_node(key, (Node *) index_offset);
} while (!is_file_offset(index_offset));
index_offset = decode(index_offset);
}
long retval;
if (r->use_xrp) {
retval = lookup_bpf(r->db_handler, r->bpf_fd, &query, ROOT_NODE_OFFSET);
} else {
retval = lookup_key_userspace(r->db_handler, &query, index_offset);
}
clock_gettime(CLOCK_REALTIME, &tpe);
size_t latency = 1000000000 * (tpe.tv_sec - tps.tv_sec) + (tpe.tv_nsec - tps.tv_nsec);
r->timer += latency;
r->latency_arr[i] = latency;
/* Parse and check value from db */
char buf[sizeof(val__t) + 1];
buf[sizeof(val__t)] = '\0';
memcpy(buf, query.value, sizeof(val__t));
unsigned long long_val = strtoul(buf, NULL, 10);
/* Check result, print errors, etc */
if (retval < 0) {
fprintf(stderr, "XRP pread failed with code %d\n", errno);
} else if (query.found == 0) {
fprintf(stderr, "Value for key %ld not found\n", key);
} else if (key != long_val) {
printf("Error! key: %lu val: %s thrd: %ld\n", key, buf, r->index);
}
}
return NULL;
}
void read_node(ptr__t ptr, Node *node, int db_handler) {
checked_pread(db_handler, node, sizeof(Node), decode(ptr));
}
static int parse_opt(int key, char *arg, struct argp_state *state) {
struct ArgState *st = state->input;
switch (key) {
case ARGP_KEY_ARG:
switch (state->arg_num) {
/* DB filename */
case 0:
st->filename = arg;
break;
/* Number of layers in db */
case 1: {
char *endptr = NULL;
st->layers = (int) strtol(arg, &endptr, 10);
if ((endptr != NULL && *endptr != '\0') || st->layers < 0) {
argp_failure(state, 1, 0, "invalid number of layers");
}
break;
}
/* command name */
case 2:
if (strncmp(arg, RANGE_CMD, sizeof(RANGE_CMD)) == 0) {
st->subcommand_retval = run_subcommand(state, RANGE_CMD, do_range_cmd);
}
else if (strncmp(arg, CREATE_CMD, sizeof(CREATE_CMD)) == 0) {
st->subcommand_retval = run_subcommand(state, CREATE_CMD, do_create_cmd);
}
else if (strncmp(arg, GET_CMD, sizeof(GET_CMD)) == 0) {
st->subcommand_retval = run_subcommand(state, GET_CMD, do_get_cmd);
}
else {
argp_error(state, "unsupported argument %s", arg);
}
break;
default:
argp_error(state, "too many arguments");
}
break;
case ARGP_KEY_END:
if (state->arg_num < 3) {
printf("nargs %d\n", state->arg_num);
argp_error(state, "too few arguments");
}
break;
default:
break;
}
return 0;
}
int main(int argc, char *argv[]) {
struct argp_option options[] = {
{ 0 }
};
struct ArgState arg_state = default_argstate();
struct argp argp = { options, parse_opt, "DB_NAME N_LAYERS CMD [CMD_ARGS] [CMD_OPTS]", doc };
argp_parse(&argp, argc, argv, ARGP_IN_ORDER, 0, &arg_state);
return arg_state.subcommand_retval;
}